首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 718 毫秒
1.
针对地理空间遥感图像中检测目标存在多尺度特性、形态多变以及小目标判别特征过少等造成检测识别精度不高的问题,提出了基于多尺度下遥感小目标多头注意力检测算法YOLO-StrVB。对网络结构进行重构,搭建多尺度网络模型,增加目标检测层,提高特征提取网络下遥感小目标模型不同尺度下的检测能力;加入双向特征金字塔网络(Bi-FPN)进行多尺度特征融合,提高双向跨尺度连接和加权特征融合;在YOLOv5网络末端融合Swin Transformer多头注意力机制块,提升感受野适应目标识别任务的多尺度融合关系,优化主干网络;使用Varifocal loss对网络进行训练,提升遥感密集检测小目标的存在置信度和定位精度,并选用CIoU作为边界框回归的损失函数,提高感知分类得分(IACS)的边框回归精度。通过在遥感目标数据集NWPU VHR-10上的实验验证,对比YOLOv5原模型的mAP提高了3.05个百分点,能有效提高小目标的检测精度,达到了对地理空间遥感图像中小目标检测的鲁棒性。  相似文献   

2.
针对遥感图像内容丰富且复杂,具有目标种类多、密集分布和尺寸变化剧烈等特点,导致遥感图像中目标多尺度尤其是小目标难以检测的问题,提出一种基于自适应多尺度特征融合(AMFF)和注意力特征增强(AFE)的无锚框遥感图像目标检测算法.首先将主干网络提取的图像特征输入AMFF,自适应地融合多个尺度的特征,增加特征复用,提升网络的多尺度特征表达能力;然后将AMFF输出的特征输入到加入了AFE模块的检测头中,AFE通过结合多分支空洞卷积与注意力机制,在提高网络对目标尺度的泛化能力的同时增强有效特征信息;最后进行分类和回归,得到检测结果.在DIOR和NWPU VHR-10公开数据集上,与多种主流目标检测算法的实验结果表明,所提算法在2个数据集上的平均检测精度分别为72.4%和87.4%,较基线网络分别提升9.4和13.5个百分点,比次优结果分别提升6.3和1.7个百分点;平均检测精度高于主流目标检测算法,较基线网络的平均检测精度显著提高,能够更加准确地检测小尺度目标,同时有效地提升多尺度目标的检测精度.  相似文献   

3.
遥感目标检测是从遥感图像中对目标进行类别识别与定位的过程,它是遥感图像处理领域中一个重要的研究分支。目标尺度变化大和目标姿态旋转多变是制约遥感图像目标检测性能的重要因素之一。针对上述难点,本文提出了基于多尺度特征与角度信息的无锚定框目标检测方法。首先,该方法在经典特征金字塔网络中嵌入特征选择与对齐模块解决现有的特征金字塔网络存在的特征错位和通道信息丢失两种缺陷,从特征层面提升检测模型多尺度学习能力;其次,针对现有基于锚定框的旋转目标检测方法存在超参数敏感的问题,在基于无锚定框目标检测网络基础上加入了旋转边界框定位方式,无需对检测性能敏感的锚定框超参数进行设置;最后,为了解决旋转边界框存在边界突变问题,该方法将旋转边界框转换为二维高斯分布表示,并引入基于二维高斯分布的旋转回归定位损失函数来驱动检测网络学习目标的方向信息。实验结果表明,在多尺度和旋转目标检测方面,该方法的性能优于近几年提出的遥感目标检测方法。  相似文献   

4.
针对遥感影像数据集的图像在形状、纹理和颜色上存在较大差别,以及因拍摄高度和角度不同存在的尺度差异导致遥感场景分类精度不高的问题,提出利用主动旋转聚合来融合不同尺度的特征,并通过双向门控提高底层特征与顶层特征互补性的特征融合补偿卷积神经网络(FAC-CNN)。该网络利用图像金字塔为原始图像生成不同尺度图像后将其输入到分支网络中来提取多尺度特征,并提出主动旋转聚合的方式来融合不同尺度的特征,使融合后的特征具有方向信息,从而提高模型对不同尺度输入以及不同旋转输入的泛化能力,实现模型分类精度的提升。FAC-CNN比基于VGGNet的注意循环卷积网络(ARCNet-VGGNet)和门控双向网络(GBNet)在西北工业大学遥感场景图像分类数据集(NWPU-RESISC)上准确率分别提升了2.05个百分点与2.69个百分点,在航空影像数据集(AID)上准确率分别提升了3.24个百分点与0.86个百分点。实验结果表明,FAC-CNN能有效解决遥感影像数据集存在的问题,提高遥感场景分类的精度。  相似文献   

5.
目的 遥感图像目标检测在国防安全、智能监测等领域扮演着重要的角色。面对遥感图像中排列密集且方向任意分布的目标,传统水平框目标检测不能实现精细定位,大型和超大型的目标检测网络虽然有强大表征学习能力,但是忽略了模型准确率与计算量、参数量之间的性价比,也满足不了实时检测的要求,庞大的参数量和计算量在模型部署上也非常受限,针对以上问题,设计了一种轻量级的旋转框遥感图像目标检测模型(YOLO-RMV4)。方法 对原MobileNetv3网络进行改进,在特征提取网络中加入性能更好的通道注意力机制模块(efficient channel attention,ECA),并且对网络规模进行适当扩展,同时加入路径聚合网络(path aggregation network,PANet),对主干网络提取特征进行多尺度融合,为网络提供更丰富可靠的目标特征。网络检测头中则采用多尺度检测技术,来应对不同尺寸的目标物体,检测头中的角度预测加入了环形圆滑标签(circular smooth label,CSL),将角度回归问题转换为分类问题,从而使预测角度和真实角度之间的距离可以衡量。结果 将提出的检测模型在制备的AV...  相似文献   

6.
遥感图像的目标检测任务是遥感应用领域的一个研究热点,一直受到广泛的关注。随着遥感图像分辨率的提高,遥感图像中目标的多方向性、目标大纵横比等特点更加明显,这对于已有的方法是一个挑战。针对以上问题,提出了基于单级特征金字塔的图像旋转目标检测模型。设计了单级特征金字塔结构,并结合膨胀卷积组获得目标的多尺度特征;使用分类方法处理旋转框的角度信息,结合DETR的集合预测思想,构造新的边界框回归损失,实现无锚框旋转目标检测;为了减少模型计算量并加快收敛速度,在解码器的交叉注意力上加入权重约束,将全局注意力计算限制在局部范围内。在DOTA数据集上的实验证明,该方法在提升模型检测性能的同时,有效地解决了DETR模型收敛速度慢的问题。  相似文献   

7.
小目标检测用来识别图像中小像素尺寸目标。传统目标识别算法泛化性差,而通用的深度卷积神经网络算法容易丢失小目标的特征,对小目标识别的效果不甚理想。针对以上问题,提出了一种基于注意力机制的小目标检测深度学习模型AM-R-CNN,该模型在ResNet101主干网络和候选区域生成网络中使用了通道域注意力和空间域注意力,通道域注意力模块实现了通道维度上的特征加权标定,空间域注意力模块实现了空间维度上的特征聚焦,从而提升了小目标的捕获效果。此外,模型使用数据增强技术和多尺度特征融合技术,保证了小目标特征提取的有效性。在遥感影像数据集上的识别船只实验表明,注意力模块可带来小目标检测的性能提升。  相似文献   

8.
针对遥感图像中背景复杂目标、车辆小导致的成像模糊的目标漏检问题,提出一种基于YOLOv5s的改进模型。改进模型设计一种新的主干网络结构:改进模型的主干特征提取选用RepVGG网络,同时在主干网络中加入注意力机制CoordAttention来提高模型小目标的感知能力。增加多尺度特征融合,提高改进模型对于小目标的检测精度,边框回归的损失函数选择使用DIoU,帮助改进模型实现更加精准定位。实验结果表明,改进后的YOLOv5模型在遥感图像的目标检测,相较于原始模型在小目标车辆中检测精度提升5.3个百分点,与Faster R-CNN相比mAP提升16.88个百分点。改进后的模型与主流的检测算法相比能有较大的检测精度提升,相较于原始的YOLOv5s模型在遥感图像小车辆检测有更好的检测精度。  相似文献   

9.
基于旋转框精细定位的遥感目标检测方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
遥感图像中的目标往往呈现出任意方向排列,而常见的目标检测算法均采用水平框检测,并不能满足这类场景的应用需求.因此提出一种旋转框检测网络R2-FRCNN.该网络利用粗调与细调两阶段实现旋转框检测,粗调阶段将水平框转换为旋转框,细调阶段进一步优化旋转框的定位.针对遥感图像存在较多小目标的特点,提出像素重组金字塔结构,融合深浅层特征,提升复杂背景下小目标的检测精度.此外,为了在金字塔各层中提取更加有效的特征信息,在粗调阶段设计一种积分与面积插值法相结合的感兴趣区域特征提取方法,同时在细调阶段设计旋转框区域特征提取方法.最后在粗调和细调阶段均采用全连接层与卷积层相结合的预测分支,并且利用Smooth Ln作为网络的回归损失函数,进一步提升算法性能.提出的网络在大型遥感数据集DOTA上进行评估,评估指标平均准确率达到0.7602.对比实验表明了R2-FRCNN网络的有效性.  相似文献   

10.
针对卷积神经网络(CNN)平等地对待输入图像中潜在的对象信息和背景信息,而遥感图像场景又存在许多小对象和背景复杂的问题,提出一种基于注意力机制和多尺度特征变换的尺度注意力网络模型。首先,开发一个快速有效的注意力模块,基于最优特征选择生成注意力图;然后,在ResNet50网络结构的基础上嵌入注意力图,增加多尺度特征融合层,并重新设计全连接层,构成尺度注意力网络;其次,利用预训练模型初始化尺度注意力网络,并使用训练集对模型进行微调;最后,利用微调后的尺度注意力网络对测试集进行分类预测。该方法在实验数据集AID上的分类准确率达到95.72%,与ArcNet方法相比分类准确率提高了2.62个百分点;在实验数据集NWPU-RESISC上分类准确率达到92.25%,与IORN方法相比分类准确率提高了0.95个百分点。实验结果表明,所提方法能够有效提高遥感图像场景分类准确率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号