首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This paper investigates the cooperative output regulation problem of linear multi-agent systems with a linear exogenous system (exo-system). The network topology is described by a directed graph which contains a directed spanning tree with the exo-system as the root. Aiming at improving the transient performance of the multi-agent systems, a dynamic control law is developed by the composite nonlinear feedback (CNF) control technique. In particular, a distributed dynamic compensator independent of the interaction on the compensator states of agents among the network, is adopted. The solvability condition for the cooperative output regulation problem is obtained using the small-gain theory, which will not be destroyed by adding the nonlinear feedback part of the CNF control law. It is also shown that in the case with the exo-system not diverging exponentially, the small-gain condition can be guaranteed using the low-gain design. Finally, simulation results illustrate that the proposed CNF control law improves the transient performance for the cooperative output regulation of linear multi-agent systems.  相似文献   

2.
This paper investigates the composite nonlinear feedback (CNF) control technique for linear singular systems with input saturation. First, a linear feedback control law is designed for the step tracking control problem of linear singular systems subject to input saturation. Then, based on this linear feedback gain, a CNF control law is constructed to improve the transient performance of the closed-loop system. By introducing a generalized Lyapunov equation, this paper develops a design procedure for constructing the CNF control law for linear singular systems with input saturation. After decomposing the closed-loop system into fast subsystem and slow subsystem, it can be shown that the nonlinear part of the CNF control law only relies on slow subsystem. The improvement of transient performance by the proposed design method is demonstrated by an illustrative example.  相似文献   

3.
This paper studies the technique of the composite nonlinear feedback (CNF) control for a class of cascade nonlinear systems with input saturation. The objective of this paper is to improve the transient performance of the closed-loop system by designing a CNF control law such that the output of the system tracks a step input rapidly with small overshoot and at the same time maintains the stability of the whole cascade system. The CNF control law consists of a linear feedback control law and a nonlinear feedback control law. The linear feedback law is designed to yield a closed-loop system with a small damping ratio for a quick response, while the nonlinear feedback law is used to increase the damping ratio of the closed-loop system when the system output approaches the target reference to reduce the overshoot. The result has been successfully demonstrated by numerical and application examples including a flight control system for a fighter aircraft.  相似文献   

4.
In this paper, we present a composite nonlinear feedback (CNF) control technique for linear discrete-time multivariable systems with actuator saturation. The CNF control law serves to improve the transient performance of the closed-loop system by adding an additional nonlinear feedback. The linear feedback can be designed to yield a quick response at the initial stage, then the nonlinear feedback is introduced to smooth out overshoots when the system output approaches the target reference. As such, the resulting closed-loop system typically has very fast transient response and small overshoots. The goal of this work is to complete the theory for general discrete-time systems. The technique is applied to a magnetic-tape-drive servo system design and yields a huge improvement in settling time compared to that of a purely linear controller.  相似文献   

5.
This paper focuses on composite nonlinear feedback (CNF) controller design for tracking control problem of strict-feedback nonlinear systems with input saturation to address the improvement of transient performance. First, without considering the input saturation, a stabilisation control law is designed by using standard backstepping technique for the nonlinear system, then a feedforward control law is added to the backstepping-based stabilisation control law to construct a tracking control law. The tracking control law is tuned to drive the output of the closed-loop system to track a command input with quick response. Then, an additional nonlinear feedback law is constructed and combined with the tracking control law to obtain a CNF control law. The role of this additional nonlinear feedback law is to smoothly change the damping ratio of the closed-loop system while the system output approaches the command input, and to reduce overshoot caused by the tracking control law. It is shown that the extra-adding nonlinear feedback part does not cause the loss of stability of the closed-loop system in its attractive basin.  相似文献   

6.
The performance of the composite nonlinear feedback (CNF) control law relies on the selection of the linear feedback gain and the nonlinear function. However, it is a tough task to select an appropriate linear feedback gain and appropriate parameters of the nonlinear function because the general design procedure of CNF control just gives some simple guidelines for the selections. This paper proposes an operational design procedure based on the structural decomposition of the linear systems with input saturation. The linear feedback gain is constructed by two linear gains which are designed independently to stabilize the unstable zero dynamics part and the pure integration part of the system respectively. By investigating the influence of these two linear gains on transient performance, it is flexible and efficient to design a satisfactory linear feedback gain for the CNF control law. Moreover, the parameters of the nonlinear function are tuned automatically by solving a minimization problem. The proposed design procedure is illustrated by applying it to design a tracking control law for the inverted pendulum on a cart system. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

7.
This paper is concerned with transient performance in tracking problem for switched linear systems with input saturation. A design procedure for constructing the composite nonlinear feedback (CNF) control law is developed. Under the average dwell time scheme, the controlled output of the closed‐loop switched system tracks asymptotically a step reference by CNF control technique without exceeding the saturation limit. At the same time, the desired transient performance with quick response and small overshoot can be achieved. In addition, the proposed method is applied to the control of turntable servo system. The example of turntable demonstrates the feasibility and effectiveness of the results proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we study the cooperative semi-global robust output regulation problem for a class of minimum phase nonlinear uncertain multi-agent systems. This problem is a generalization of the leader-following tracking problem in the sense that it further addresses such issues as disturbance rejection, robustness with respect to parameter uncertainties. To solve this problem, we first introduce a type of distributed internal model that converts the cooperative semi-global robust output regulation problem into a cooperative semi-global robust stabilization problem of the so-called augmented system. We then solve the semi-global stabilization problem via distributed dynamic output control law by utilizing and combining a block semi-global backstepping technique, a simultaneous high gain feedback control technique, and a distributed high gain observer technique.  相似文献   

9.
This paper investigates the semi-global output feedback disturbance rejection control problem for a class of uncertain nonlinear systems with additive disturbances using linear sampled-data control. Aiming to reject the adverse effects caused by the uncertainties and unknown nonlinear perturbations which may not satisfy the strict feedback or feedforward structure, a new generalised discrete-time extended state observer is proposed to estimate the disturbance at sampling points. An output feedback disturbance rejection control law is then constructed in a sampled-data form which facilitates digital implementations. By selecting adequate control gains and a sufficiently small sampling period to restrain the state growth under a zero-order-hold input, the semi-global asymptotic stability of the hybrid closed-loop system and the disturbance rejection ability are proved. Both numerical example and an application of a single-link robot arm system demonstrate the feasibility and efficacy of the proposed method.  相似文献   

10.
Quick response and small overshoot are two desired transient performances of target tracking control. While most of the design schemes compromise between these two performances, we try to achieve both simultaneously for the tracking control of a class of nonlinear discrete-time systems with input saturation by using a composite nonlinear feedback (CNF) control technique. The closed-loop system with improved transient performance preserves the stability of the nonlinear part of the partially linear composite system.  相似文献   

11.
We provide an alternative solution to the problem of semi-global stabilization of a class of minimum phase nonlinear systems which is considered in Reference 17. Our method yields a stabilizing linear state feedback law in contrast to a nonlinear state feedback law proposed in Reference 17. We eliminate the peaking phenomenon by inducing a specific time-scale structure in the linear part of the closed-loop system. This time-scale structure consists of a very slow and a very fast time scale. The crucial component in our method is the relation between the slow and the fast time scales. Our proposed linear state feedback control law has a single tunable gain parameter that allows for local asymptotic stability and regulation to the origin for any initial condition in some a priori given (arbitrarily large) bounded set.  相似文献   

12.
Aiming at the actuator saturation problem and the system performance requirement, this article proposes a new control scheme, i.e. a newly developed tracking differentiator-composite nonlinear feedback (TDCNF) control law, which is the combination of a tracking differentiator (TD) and a reduced order composite nonlinear feedback (CNF) control law. The TD, used here, mainly helps to provide a smooth reference signal and largely avoid actuator saturation. The reduced order CNF control law, on the one hand, estimates those unmeasurable state variables for measurement feedback control and, on the other hand, ensures satisfactory system performance. The stability of the newly developed TDCNF is proved in detail. Finally, to verify the effectiveness of the newly developed TDCNF control law, two illustrative examples are demonstrated and therein a novel design of the proposed control law is given. Simulation results show that the proposed control law can achieve good tracking performance and effectively avoid the actuator saturation.  相似文献   

13.
It is well known that multi‐input, multi‐output nature of nonlinear system and generalized exosystem have posed some challenges to output regulation theory. Recently, the global robust output regulation problem for a class of multivariable nonlinear system subject to a linear neutrally stable exosystem has been studied. It has been shown that a linear internal model‐based state feedback control law can lead to the solution of previous problem. In this paper, we will further study the global robust output regulation problem of the system subject to a nonlinear exosystem. By utilizing nonlinear internal model design and decomposing the multi‐input control problem into several single‐input control problems, we will solve the problem by recursive control law design. The theoretical result is applied to the non‐harmonic load torque disturbance rejection problem of a surface‐mounted permanent magnet synchronous motor. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This paper is concerned with the transient performance improvement in tracking control problems for linear multivariable discrete‐time singular systems subject to actuators saturation. A composite nonlinear feedback control strategy is considered, and the resulting controller consists of a linear feedback law and a nonlinear feedback law without any switching element. The nonlinear term leads to a varying damping ratio of the closed‐loop system and yields a small overshoot as the output approaches the target reference, whereas the linear component is designed to achieve a quick response of the closed‐loop system. Two composite nonlinear feedback control laws by both state feedback and measurement output feedback are addressed. An illustrative example is included to show the validity of the obtained results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Semi-global stabilization and output regulation of linear systems subject to state and/or input constraints have been studied in our earlier work by using state feedback. For the same problems, observer based measurement feedback control designs are the topics of this paper. High-gain observers are used in the feedback design in order to obtain accurate estimates of the state so that the constraint violation can be avoided. Due to the peaking phenomenon associated with a high-gain observer, a special saturation protection is built in the control laws to avoid possible constraint violation. The results in this paper show that the semi-global stabilization and semi-global output regulation problems for constrained linear systems are solvable via measurement feedback under solvability conditions similar to those in the state feedback.  相似文献   

16.
Most of existing results on robust output regulation problem of singular nonlinear systems are limited to local solutions. In this paper, the semi-global robust output regulation problem for a class of singular nonlinear systems is investigated by using a nonlinear internal model. Attaching a nonlinear internal model to the singular nonlinear system yields an augmented singular nonlinear system whose semi-global robust stabilisation solution leads to the solution of the semi-global robust output regulation problem of the original singular nonlinear system. The solvability conditions of the semi-global output regulation problem are established by addressing the solvability of the robust stabilisation problem of augmented singular nonlinear system. Finally, a numerical simulation example is used to illustrate the design of the semi-global regulator for the singular nonlinear systems.  相似文献   

17.
This paper studies incremental passivity and global output regulation for switched nonlinear systems, whose subsystems are not required to be incrementally passive. A concept of incremental passivity for switched systems is put forward. First, a switched system is rendered incrementally passive by the design of a state-dependent switching law. Second, the feedback incremental passification is achieved by the design of a state-dependent switching law and a set of state feedback controllers. Finally, we show that once the incremental passivity for switched nonlinear systems is assured, the output regulation problem is solved by the design of global nonlinear regulator controllers comprising two components: the steady-state control and the linear output feedback stabilising controllers, even though the problem for none of subsystems is solvable. Two examples are presented to illustrate the effectiveness of the proposed approach.  相似文献   

18.
We study in this paper the theory and applications of a nonlinear control technique, i.e., the so-called composite nonlinear feedback control, for a class of linear systems with actuator nonlinearities. It consists of a linear feedback law and a nonlinear feedback law without any switching element. The linear feedback part is designed to yield a closed-loop system with a small damping ratio for a quick response, while at the same time not exceeding the actuator limits for the desired command input levels. The nonlinear feedback law is used to increase the damping ratio of the closed-loop system as the system output approaches the target reference to reduce the overshoot caused by the linear part. It is shown that the proposed technique is capable of beating the well-known time-optimal control in the asymptotic tracking situations. The application of such a new technique to an actual hard disk drive servo system shows that it outperforms the conventional method by more than 30%. The technique can be applied to design servo systems that deal with "point-and-shoot" fast targeting.  相似文献   

19.
非线性控制系统的全局输出调节   总被引:5,自引:1,他引:4  
佘焱  张嗣瀛 《自动化学报》1999,25(2):184-190
讨论了非线性控制系统的全局输出调节.首先推广精确线性化方法,通过状态反馈 和微分同胚将非线性系统的全局输出调节问题,转化为线性系统对非线性系统的跟踪问题. 通过提出可解性的概念,得到线性系统对非线性系统全局跟踪的条件,该结果是线性系统结 果的推广.在反馈同胚变换全局成立条件下,得到非线性控制系统全局输出调节问题的充分 条件,该条件对外部系统只做较弱的可解性假设,在反馈同胚变换局部成立的条件下,可得局 部结果.  相似文献   

20.
双惯性伺服传动系统的抗扰动复合非线性控制   总被引:1,自引:0,他引:1  
本文把复合非线性反馈(composite nonlinear feedback,CNF)控制技术推广到带有非定常扰动的输入饱和限幅的线性系统.其中,未知扰动被作为一个扩张状态量增广到被控对象的模型中,然后设计一个扩展状态观测器来对系统的状态量和扰动同时进行估计,通过在CNF控制的框架中引入一个扰动补偿机制,在降低由扰动引起的稳态误差的同时,保留了CNF原有的快速的瞬态性能.这种控制方案对定常或时变扰动、匹配或非匹配的扰动,都能统一处理.论文对该控制方案的闭环稳定性和定点跟踪性能进行了理论分析,并把它应用到一个双惯性伺服传动系统.数值仿真结果验证了该方案在定点跟踪控制中具有优越的瞬态性能和稳态精度,且对扰动/给定目标的幅值变化也有一定的性能鲁棒性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号