首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A novel compact self‐similar fractal ultra‐wideband (UWB) multiple‐input‐multiple‐output (MIMO) antenna is presented. This fractal geometry is designed by using iterated function system (IFS). Self‐similar fractal geometry is used here to achieve miniaturization and wideband performance. The self‐similarity dimension of proposed fractal geometry is 1.79, which is a fractional dimension. The antenna consists of two novel self‐similar fractal monopole‐antenna elements and their metallic area is minimized by 29.68% at second iteration. A ground stub of T‐shape with vertical slot enhances isolation and impedance bandwidth of proposed MIMO antenna. This antenna has a compact dimension of 24 × 32 mm2 and impedance bandwidth (S11 < ?10 dB) of 9.4 GHz ranging from 3.1 to 12.5 GHz with an isolation better than 16 dB. The various diversity performance parameters are also determined. There is good agreement between measured and simulated results, which confirms that the proposed antenna is acceptable for UWB applications.  相似文献   

2.
A metal‐frame‐integrated eight‐antenna array operating in the long term evolution bands 41/42/43 (2.496 GHz‐2.69 GHz, 3.4 GHz‐3.8 GHz) for future fifth generation multiple‐input multiple‐output (MIMO) applications in smartphones is presented and discussed. The proposed eight‐antenna MIMO array is formed by integrating four identical building blocks, each of which consists two dual‐mode monopole antenna elements with a neutralization line (NL) embedded in between. Part of the metal frame is exploited to increase the effective resonant length of the monopole antenna. By using the wideband NL, two transmission dips can be generated, and thus an improved isolation (>10 dB) is achieved. The proposed antenna array was simulated and experimentally tested. Good antenna efficiency (>44%) and low envelope correlation coefficient (<0.2) were obtained in the bands of interest. In an 8 × 8 MIMO system with 20 dB signal‐to‐noise ratio, the calculated ergodic channel capacity was as high as 38 bps/Hz in the low band, and 38.3 bps/Hz in the high band. Details of the proposed antenna array are described. The simulated, measured, and calculated results are presented.  相似文献   

3.
A novel compact planar dual‐band multiple input multiple output (MIMO) antenna with four radiating elements for 5G mobile communication is proposed. Each radiating element has a planar folded monopole, which is surrounded by L‐shaped meta‐rim extended ground stubs. The compact folded arms act as the main radiating elements, while combined with the L‐shaped meta‐rim stubs, the proposed antenna forms multiple resonances so as to achieve dual‐band coverage. The simulated and measured results show that the proposed antenna has two wide bands of ?6 dB return loss, consisting of 1.6 to 3.6 and 4.1 to 6.1 GHz, respectively. Without any additional isolation structure between the elements, the isolation for the proposed 2 × 2 MIMO antenna in both desired bands can be achieved better than 12 dB. The measured results show that the proposed MIMO antenna with good performance, that is, stable radiation patterns, high efficiencies, low specific absorption ratio (SAR) to human tissues, is suitable for WLAN/LTE, 4G and future 5G mobile phone applications.  相似文献   

4.
In this article, a new compact eight‐element three‐dimensional (3D) design of ultra‐wideband (UWB) multiple‐input‐multiple‐output (MIMO) antenna is proposed. For realizing polarization diversity, four elements of the MIMO antenna are oriented horizontally and four elements are arranged vertically. In the horizontal arrangement, the antenna resonating elements are placed orthogonally to each other, which reduces interelement coupling and offers a consistent link with the wireless systems/devices. The proposed antenna shows a bandwidth (S11 ≤ ?10 dB) of 17.99 GHz (2.83‐20.82 GHz) and isolation larger than 15 dB in the resonating band. The proposed MIMO/diversity antenna performance parameters such as envelope correlation coefficient, diversity gain, and total active reflection coefficient are evaluated and presented. Furthermore, the unit cell of the MIMO system is simulated for the packaged environment and it is observed that the antenna housing does not affect the antenna performance.  相似文献   

5.
A compact four‐element multiple‐input‐multiple‐output (MIMO) antenna for ultra‐wideband (UWB) applications with WLAN band‐notched characteristics is proposed here. The proposed antenna has been designed to operate from 2 to 12 GHz while reject the frequencies between 4.9 to 6.4 GHz. The four antenna elements are placed orthogonal to attain the polarization diversity and high isolation. A thin stub connected to the ground plane is deployed as a LC notch filter to accomplish the rejected WLAN band in each antenna element. The mutual coupling between the adjacent elements is at least 17 dB while it has low indoor and outdoor envelop correlation (<0.45) and high gain with compact size of two boards, each measuring 50 × 25 mm2. To validate the concept, the prototype antenna is manufactured and measured. The comparison of the simulation results showed good agreement with the measured results. The low‐profile design and compact size of the proposed MIMO antenna make it a good candidate for diversity applications desired in portable devices operating in the UWB region.  相似文献   

6.
A compact ultra‐wideband (UWB) multiple‐input‐multiple‐output (MIMO) antenna with dual band elimination characteristics is presented. The proposed MIMO antenna is comprised of four identical elliptical shaped monopole radiators located orthogonally to each other. A second order Koch fractal geometry is applied on the edges of the ground planes of the radiating elements; to reduce the overall size of the MIMO antenna, without compromising the lower frequency response. Further, in order to eliminate the undesired resonant bands (3.5 and 5.5 GHz) from UWB, an elliptical complementary split ring resonator is introduced in the monopole radiator. For reducing inter‐element coupling in the proposed MIMO antenna, a different approach (of slotted edge substrate) is used, as a substitute of traditional decoupling stub/elements. In the entire operating band of 3 to 13.5 GHz, inter‐element isolation more than 22 dB and envelope correlation coefficient less than 0.008 are obtained. The measured parameters of the fabricated prototype antenna are found in good agreement with the simulated results.  相似文献   

7.
A multi‐band directional multiple‐input–multiple‐output (MIMO) antenna system is presented based on a rectangular loop excited Quasi‐Yagi configuration. A 64% reduction in size is obtained using a rectangular meandered element as well as a small ground plane. The proposed two‐element MIMO antenna system covers the Telemetry L‐band and several LTE/WLAN bands. It has a wide measured bandwidth of 689 MHz (1.897–2.586 GHz) in the desired band centered at 2 GHz, and a measured bandwidth of more than 168 MHz across rest of the bands. The MIMO antenna system has a total size of 45 × 120 × 0.76 mm3, with a single element size of 55 × 60 × 0.76 mm3. The non‐desired back‐lobe radiation which is obtained using a small ground plane, is significantly reduced by using a novel defected ground structure (DGS) as compared with the complex techniques present in literature. The proposed DGS provides a high measured front‐to‐back ratio of 14 dB at 2 GHz and 11 dB in other bands. A maximum measured realized gain of 5.8 dBi is obtained in the desired band using a single parasitic director element. The proposed MIMO antenna system has a minimum measured radiation efficiency of 70%, isolation of 12 dB, and envelope correlation coefficient of 0.098 within all bands which ensures very good MIMO performance.  相似文献   

8.
In this article, a pair of unsymmetrical dual‐feed antennas with one shared radiator and two isolated ports is proposed for multiple‐input‐multiple‐output (MIMO) systems. The proposed antenna pair achieves high isolation between the two ports by properly adjusting the distance between the two feeding ports and the position and length of shorting strips on the radiator. The antenna has simple structure and covers the 3.3‐3.7 GHz band, which could meet the demand of future 5G applications. The measured results show that antenna has good impedance matching (better than 10 dB return loss) and high port isolation (better than 20 dB isolation) from 3.35 to 3.65 GHz. The total efficiencies are above 55% and the envelope correlation coefficient is <0.1, which is sufficient for MIMO applications.  相似文献   

9.
This article presents the designs of dual‐polarized dual wideband textile‐based two and four elements multiple‐input multiple‐output (MIMO) antennas for WLAN (IEEE 802.11a/b/g/c/n) and WiMAX (IEEE 802.16d) applications. These MIMO antennas cover the frequency spectra from 1.5 to 3.8 GHz (87% bandwidth) and 4.1 to 6.1 GHz (40% bandwidth). The characterization of the textile jeans substrate is determined experimentally using a vector network analyzer and dielectric assessment kit. These antennas provide near about 70% radiation efficiency with around 4 dBi peak gain in desired frequency ranges. The diversity performance is improved noticeably by printing meandered line structures on both planes. The proposed MIMO structure has a very low envelop correlation coefficient (ECC) <0.1 and high diversity gain (DG) >9.9. The Medium effective gain (MEG) also lies within a satisfactory value of ±3 dB. The two elements MIMO Antennas provide linear polarization at all desired frequency band while the four‐element antenna provides circular polarization at 2.4 GHz and linear polarization at 5.2 and 5.8 GHz application bands. The antenna also depicts good performance in wearable condition with safe specific absorption rate < 1.6 W/kg in all desired frequencies.  相似文献   

10.
A compact four element multi‐band multi‐input multi‐output (MIMO) antenna system for 4G/5G and IoT applications is presented in this paper. The proposed antenna is developed using the theory of characteristic modes helping in systematic design of MIMO antenna system. It consists of four L‐shaped planar inverted‐F antenna (PIFA) elements each operating at 3.5, 12.5, and 17 GHz bands with the bandwidth of 359 MHz, 1 GHz, and more than 3.7 GHz, respectively. The proposed antenna system is suitable for both 4G/5G and internet of things devices as it shows the satisfactory MIMO system performance. Good isolation characteristics are observed by implementing complimentary Metamaterial structure on the ground plane resulting in isolation level lower than ?21 dB between the antenna elements. The proposed antenna is fabricated and experimental results are also presented and discussed.  相似文献   

11.
This paper presents a compact 5G multiple‐input multiple‐output (MIMO) microstrip antenna with isolation enhancement based on a slotted complementary split‐ring resonator (SCSRR) and the theory of characteristic modes (TCMs). The metamaterial unit consists of three CSRR connected by extra slots. These added slots improve significantly the rejection response in terms of bandwidth and suppression. The dispersion diagram analysis is introduced to show the filtering characteristics of the band‐gap structure before and after adding these additional slots. The TCM is employed to investigate the behavior of this 5G MIMO antenna before and after adding the slotted CSRR. The TCM is also applied to the MIMO antenna system to build up a precise methodology that can foresee whether the isolation can be upgraded further or not. The slotted CSRR is inserted meticulously in specific locations to block the coupling modes and almost does not affect the results of the noncoupling modes to improve the isolation remarkably. With this slotted CSRR, a 27‐dB reduction in the mutual coupling between the two patch antennas is achieved. The whole design has been simulated utilizing the Microwave Studio CST ver. 18 simulator. The antenna being proposed is highly efficient and suitable for 5G wireless communication.  相似文献   

12.
A novel triple‐band antenna element by etching parasitic slot on ground plane is presented. A three‐element antenna system for WLAN MIMO communications is fabricated by using the proposed antenna element. The triple‐band antenna element is designed for the WLAN standard frequency ranges (2.4‐2.485, 5.15‐5.35, and 5.475‐5.725 GHz). The three identical antenna elements are rotationally symmetric on the substrate, isolated by using metal‐vias cavity. The measured average peak gain within the operational bandwidth is about 2.7 dBi. The isolation between the antenna elements can achieve better than 17 dB at the lower band (2.25‐2.65 GHz), while more than 32 dB at the higher bands (5.20‐5.35 and 5.47‐5.73 GHz) is obtained.  相似文献   

13.
A 10‐element multiple‐input multiple‐output (MIMO) handset antenna array with triple‐band operation in the long‐term evolution band 42 (3400‐3600 MHz), band 43 (3600‐3800 MHz), and band 46 (5150‐5925 MHz) is studied in this article. Acceptable antenna performances are obtained by using polarization and pattern diversity techniques. To assess the multiplexing performances of the handset array in 5G, an 8‐element base station array covering 3.4‐7.1 GHz is presented and studied. An 8 × 10 MIMO system incorporating 8 transmit antennas, propagation scenario and 10 receive antennas is successfully reported, and its multiplexing performances are evaluated. The computed channel capacities in the low and high bands can be as high as 43.3 bps/Hz and 41.6 bps/Hz, which are promising for multi‐gigabit‐per‐second (multi‐Gbps) data transmission in 5G. The effects of user's hand and low MIMO order on the channel capacities are also investigated. Results show the robust performances of the proposed antenna system.  相似文献   

14.
A compact two‐element multiple‐input‐multiple‐output (MIMO) antenna system with improved impedance matching and isolation is presented for future sub‐6 GHz 5G applications. The two identical tapered microstrip line fed modified rhombus‐shaped radiating elements are placed in the same orientation at a compact substrate area of 0.24λ0 × 0.42λ0 (where, λ0 at 3.6 GHz) on a shared rectangular ground. A remodeled T‐shaped ground stub is placed between a pair of radiating element to achieve improved impedance bandwidth and isolation. Further, a split U‐shaped stub connected to center of each radiating element to achieve the desired resonant frequency of 3.6 GHz. The proposed antenna covers a ?10 dB operating band of 3.34 to 3.87 GHz (530 MHz) with more than 20 dB isolation between a pair of elements. MIMO performances are also analyzed and experimentally validated. The measured performances of a prototype are found in good agreement with simulated performances. Further, the simulation study is carried out to see the effect of housing and extended ground plane on two‐element MIMO antenna for practical application. An idea of realization of 12‐element MIMO is also studied using the proposed two‐element MIMO antenna.  相似文献   

15.
A quad‐port planar multiple‐input‐multiple‐output (MIMO) antenna possessing super‐wideband (SWB) operational features and triple‐band rejection characteristics is designed. The proposed MIMO configuration consists of four modified‐elliptical‐self‐complementary‐antenna (MESCA) elements, which are excited by tapered co‐planar waveguide (TCPW) feed lines. A radiator‐matched complementary slot is present in the ground conductor patch of each MESCA element. The proposed MIMO antenna exhibits a bandwidth ratio of 36:1 (|S11| < ?10 dB; 0.97‐35 GHz). Further, a step‐like slit‐resonator is etched in the radiator to eliminate interferences at 3.5 GHz. A hexagonal shaped complementary split ring resonator (CSRR) is also loaded on the MESCA radiator to remove interferences at 5.5 and 8.5 GHz. The MIMO antenna is fabricated on FR‐4 substrate of size 63 × 63 mm2 and experimental results are found in good agreement with the simulated results. The MIMO antenna exhibits inter‐element isolation >17 dB and envelope correlation coefficient (ECC) <0.01 at all the four ports.  相似文献   

16.
In this article, a deca‐port carbon fiber‐based multiple‐input‐multiple‐output (MIMO) antenna with pattern diversity is presented. The radiating elements of the proposed antenna consist of low cost, light weight, environmental friendly graphite material. The 10 radiating elements of the MIMO antenna are arranged in a group of two (termed as sub‐MIMO structure), in a cubical manner to cover all the propagating directions. Furthermore, the two carbon fiber‐based radiating elements of the sub‐MIMO structure are placed in an orthogonal arrangement to generate different radiation patterns. The antenna exhibits high inter‐element isolation and low envelope correlation coefficient due to orthogonal placement of the radiating elements. The antenna is fabricated and the measured results confirm that the proposed MIMO/diversity antenna may be useful for vehicle‐to‐network applications. The MIMO performance parameters such as diversity gain, total active reflection coefficient, mean effective gain, channel capacity loss are evaluated and found within suitable limits. The three‐dimensional pattern diversity helps to communicate in all directions.  相似文献   

17.
In this article, a novel design of single layer, compact, multiple input multiple output (MIMO) half‐mode substrate integrated waveguide (HMSIW) cavity backed quad element slot antenna with high front‐to‐back ratio (FTBR) is proposed. The proposed antenna consists of four rectangular SIW cavities with semi‐taper radiating slots. The antenna elements are placed in a fashion to achieve high isolation. This antenna is designed for WLAN vehicular communication system to cover the frequency range of 5.84 GHz to 5.96 GHz. It has high front to back ratio (FTBR) of more than 25 dB without using any external metallic reflector. It has more than 37 dB isolation in between orthogonal elements and more than 24 dB in between parallel elements. The envelop correlation coefficient (ECC) and diversity gain are 0.003 and 9.99 dB respectively in between all the elements. Moreover, the antenna has high gain and efficiency of more than 8 dB and 94%, respectively, in 10 dB impedance bandwidth. It can be tuned in a wide range of frequency.  相似文献   

18.
An investigation to enhance the decoupling between the elements of a compact wide band multiple‐input multiple‐output (MIMO) antenna is presented in this communication. A microstrip neutralization line (NL) is designed on the top of antenna surface to enhance the port isolation. The geometry is embedded on a jeans material to be apposite for the on‐body wearable applications. The antenna covers the frequency spectra from 3.14 to 9.73 GHz (around 102.4%) and fulfills the bandwidth requirements of WiMAX (3.2‐3.8 GHz), WLAN (5.15‐5.35/5.72‐5.85 GHz), C band downlink‐uplink (3.7‐4.2/5.9‐6.425 GHz), downlink defense (7.2‐7.7 GHz), and ITU (8‐8.5 GHz) bands. The port isolation is found to be more than 32 dB over the whole application bands. The antenna is appraised in a rich scattering environment with very minimal envelope correlation coefficient (ECC < 0.12) and great amount of diversity gain (DG > 9.8). The proposed MIMO antenna system is able to achieve the channel capacity loss (CCL) of less than 0.2 BPS/Hz throughout the whole operating band. The proposed structure is etched on an area of 30 × 50 mm2. The simulated and measured performances of the proposed antenna are in well‐matched state.  相似文献   

19.
In this article, a compact half‐hexagonal ultra‐wide band multiple‐input‐multiple‐output (MIMO) antenna is presented. The key feature of the antenna is its novel isolation improvement technique which includes grounded stub along with dual grounded circular ring resonator. The antenna contains two counter facing half‐hexagonal monopoles having hybrid isolation circuit. The antenna has a compact size of 20 × 34 mm2, with operating frequency band of 3‐11 GHz where port isolation is better than 20 dB in most of the band. The MIMO performance is ensured by calculating envelop correlation coefficient and mean effective gain ratio for isotropic, indoor, and outdoor environment. The performance of the antenna with multilayer printed circuit board having large dual ground plane and device housing is also studied. Results show that the proposed MIMO antenna is a good candidate for handheld devices for wireless personal‐area networks application.  相似文献   

20.
This article presents a coplanar waveguide fed global system for mobile communications band integrated ultra wide band (UWB) multiple input multiple output (MIMO) antenna with single and dual notch band characteristics. The novelty of the antenna lies in its design as all the unit cells of the proposed UWB MIMO antenna structure are orthogonal to each other therefore the additional isolation elements responsible for achieving high isolation are not required consequently making proposed antenna design simple and easy to fabricate. In this context, 2 MIMO systems have been designed. The first MIMO system is consisting of a dual port antenna whereas the second MIMO system is a printed quad port antenna; further single and dual notch band are achieved in the proposed multi‐port MIMO antenna. The antenna shows pattern diversity throughout the impedance bandwidth range. The gain of the antenna varies from 4 to 8.48 dBi. The 2 band notches are achieved at 4.8 and 7.7 GHz in the UWB range. The proposed antenna is fabricated and it is found measured results are in good agreement with simulated results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号