首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, design and development of fault-tolerant control (FTC) is investigated for linear systems subject to loss of effectiveness and time-varying additive actuator faults as well as an external disturbance using the fault-hiding approach. The main aim of this approach is to keep the nominal controller and to design a virtual actuator that is inserted between the faulty plant and the nominal controller in order to hide actuator faults and disturbances from the nominal controller, and consequently the performance of the system before and after the occurrence of actuator faults is kept to be the same. The proposed adaptive virtual actuator does not require a separated fault detection, isolation and identification (FDII) unit and both state and output feedback cases are considered. An illustrative example is given to demonstrate the effectiveness of the proposed adaptive virtual actuator in both cases.  相似文献   

2.
In this article, we study a robust fault-tolerant control (FTC) problem for linear systems subject to time-varying actuator and sensor faults. The faults under consideration are loss of effectiveness in actuators and sensors. Based on the estimated faults from a fault detection and isolation scheme, robust parameter-dependent FTC will be designed to stabilise the faulty system under all possible fault scenarios. The synthesis condition of such an FTC control law will be formulated in terms of linear matrix inequalities (LMIs) and can be solved efficiently by semi-definite programming. The proposed FTC approach will be demonstrated on a simple faulty system with different fault levels and fault estimation error bounds.  相似文献   

3.
王君  张晓燕  李炜 《信息与控制》2019,48(3):329-338
针对具有执行器故障和外界有限能量扰动的非线性网络化控制系统(NNCS),研究了离散事件触发通讯机制(DETCS)下的主—被动混合非脆弱容错控制器的设计问题。首先考虑了故障集,基于李亚普诺夫方法和状态反馈控制策略设计了被动非脆弱容错控制器,使得系统在发生已知故障类型时能够维持自身稳定,在发生未知故障初期减缓系统性能下降的速度。其次,基于H理论设计的故障估计器在线实时检测系统故障,一旦获得未知故障信息,立即重构控制器进行补偿,确保系统渐近稳定并满足性能指标。最后,仿真算例验证了所提方法的正确性和有效性。  相似文献   

4.
This paper addresses the problem of passive fault-tolerant control for linear parameter-varying systems subject to actuator faults. The FTC, based on a linear state feedback, is designed to compensate the impact of actuator faults on system performance by stabilising the closed-loop system using interval observers. The design of interval observers is based on the discrete-time Luenberger observer structure, where uncertainties and faults with known bounds are considered. Sufficient conditions for the existence of the proposed observer are explicitly provided. Simulation results are presented to show the effectiveness of the proposed approach.  相似文献   

5.
This paper addresses the problem of integrated fault reconstruction and fault-tolerant control in linear systems subject to actuator faults via learning observers (LOs). A reconfigurable fault-tolerant controller is designed based on the constructed LO to compensate for the influence of actuator faults by stabilising the closed-loop system. An integrated design of the proposed LO and the fault-tolerant controller is explored such that their performance can be simultaneously considered and their coupling problem can be effectively solved. In addition, such an integrated design is formulated in terms of linear matrix inequalities (LMIs) that can be conveniently solved in a unified framework using LMI optimisation technique. At last, simulation studies on a micro-satellite attitude control system are provided to verify the effectiveness of the proposed approach.  相似文献   

6.
This paper studies the problem of designing adaptive fault-tolerant H-infinity controllers for linear timeinvariant systems with actuator saturation. The disturbance tolerance ability of the closed-loop system is measured by an optimal index. The notion of an adaptive H-infinity performance index is proposed to describe the disturbance attenuation performances of closed-loop systems. New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations. Based on the on-line estimation of eventual faults, the adaptive fault-tolerant controller parameters are updated automatically to compensate for the fault effects on systems. The designs are developed in the framework of the linear matrix inequality (LMI) approach, which can guarantee the disturbance tolerance ability and adaptive H-infinity performances of closed-loop systems in the cases of actuator saturation and actuator failures. An example is given to illustrate the efficiency of the design method.  相似文献   

7.
This paper studies the problem of designing adaptive fault-tolerant controllers for linear tirne-invariant systems with actuator saturation. New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations. Based on the on-line estimation of eventual faults, the adaptive fault-tolerant controller parameters are updating automatically to compensate the fault effects on systems. The designs are developed in the framework of linear matrix inequality (LMI) approach, which can enlarge the domain of attraction of closed-loop systems in the cases of actuator saturation and actuator failures. Two examples are given to illustrate the effectiveness of the design method.  相似文献   

8.
This paper investigates fault‐tolerant control (FTC) for feedback linearizable systems (FLSs) and its applications. The dynamic effects caused by the actuator faults on the feedback linearized model are firstly analyzed, which reveals that under actuator faults, the control input in the linearized model is affected by uncertain terms. In the framework of model reference control, the first FTC strategy is proposed as a robust controller, which achieves asymptotic tracking control of the FLS under actuator faults. A disadvantage of this strategy is that it relies on explicit information about several parameters in the actuator faults. This requirement is later relaxed by combining the robust FTC strategy with an adaptive technique to generate the adaptive FTC law, which is then improved to alleviate possible chattering of the actuator and estimation drifting of the adaptive parameter. Finally, the proposed FTC strategies are evaluated by reference command tracking control of a pendulum and an air‐breathing hypersonic vehicle under actuator faults. Simulation results demonstrate good tracking performance, which confirms effectiveness of the proposed strategies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, a robust actuator‐fault‐tolerant control (FTC) system is proposed for thrust‐vectoring aircraft (TVA) control. To this end, a TVA model with actuator fault dynamics, disturbances, and uncertain aerodynamic parameters is described, and a local fault detection and identification (FDI) mechanism is proposed to locate and identify faults, which utilizes an adaptive sliding‐mode observer (SMO) to detect actuator faults and two SMOs to identify and estimate their parameters. Finally, a fault‐tolerant controller is designed to compensate for these actuator faults, disturbances, and uncertain aerodynamic parameters; the approach combines back‐stepping control with fault parameters and a high‐order SMO. Furthermore, the stability of the entire control system is validated, and simulation results are given to demonstrate the effectiveness and potential for this robust FTC system.  相似文献   

10.
In this article, we propose a new method for passive fault-tolerant control of discrete time piecewise affine systems. Actuator faults are considered. A reliable piecewise linear quadratic regulator state feedback is designed such that it can tolerate actuator faults. A sufficient condition for the existence of a passive fault-tolerant controller is derived and formulated as the feasibility of a set of linear matrix inequalities (LMIs). The upper bound on the performance cost can be minimised using a convex optimisation problem with LMI constraints which can be solved efficiently. The approach is illustrated on a numerical example and a two degree of freedom helicopter.  相似文献   

11.
The objective of fault-tolerant control (FTC) is to minimise the effect of faults on system performance (stability, trajectory tracking, etc.). However, the majority of the existing FTC methods continue to force the system to follow the pre-fault trajectories without considering the reduction in available control resources caused by actuator faults. Forcing the system to follow the same trajectories as before fault occurrence may result in actuator saturation and system's instability. Thus, pre-fault objectives should be redefined in function of the remaining resources to avoid potential saturation. The main contribution of this paper is a flatness-based trajectory planning/re-planning method that can be combined with any active FTC approach. The work considers the case of over-actuated systems where a new idea is proposed to evaluate the severity of faults occurred. In addition, the trajectory planning/re-planning approach is formulated as an optimisation problem based on the analysis of attainable efforts domain in fault-free and fault cases. The proposed approach is applied to two satellite systems in rendezvous mission.  相似文献   

12.
离散时间系统的主动容错控制及飞控应用   总被引:2,自引:1,他引:2  
姜斌 《控制工程》2006,13(6):596-600
针对处理一类线性不确定离散时间系统多重的、同时发生的、突变的舵机故障问题,提出了一种新的故障估计方案。该方案考虑了两种舵机故障模型:舵机卡死和舵机失效。所提出的舵机故障估计方案适用于为战机设计一个H∞容错飞行控制器,用于以零横向加速度跟踪飞机转弯角和俯仰率指令。仿真结果表明,采用H∞容错飞行控制器能够取得较好的控制效果。  相似文献   

13.
A design technique of a recurrent cerebellar model articulation controller (RCMAC)-based fault-tolerant control (FTC) system is investigated to rectify the nonlinear faults of a biped robot. The proposed RCMAC-based FTC (RCFTC) scheme contains two components: 1) an online fault estimation module based on an RCMAC is used to provide approximation information for any nonnominal behavior due to the system failure and modeling error of the biped robot; and 2) a controller module consisting of a computed torque controller and a robust FTC is utilized to achieve FTC. In the controller module, the computed torque controller reveals a basic stabilizing controller to stabilize the system, and the robust FTC is utilized to compensate for the effects of the system failure so as to achieve fault accommodation. The adaptive laws of the RCFTC system are rigorously established based on the Lyapunov function, so that the stability of the system can be guaranteed. Finally, two simulation cases of a biped robot are presented to illustrate the effectiveness of the proposed design method. Simulation results show that the RCFTC system can effectively recover the control performance for the system in the presence of the nonlinear faults and modeling uncertainties.  相似文献   

14.
In this paper, a new active fault tolerant control (AFTC) methodology is proposed based on a state estimation scheme for fault detection and identification (FDI) to deal with the potential problems due to possible fault scenarios. A bank of adaptive unscented Kalman filters (AUKFs) is used as a core of FDI module. The AUKF approach alleviates the inflexibility of the conventional UKF due to constant covariance set up, leading to probable divergence. A fuzzy-based decision making (FDM) algorithm is introduced to diagnose sensor and/or actuator faults. The proposed FDI approach is utilized to recursively correct the measurement vector and the model used for both state estimation and output prediction in a model predictive control (MPC) formulation. Robustness of the proposed FTC system, H optimal robust controller and MPC are combined via a fuzzy switch that is used for switching between MPC and robust controller such that FTC system is able to maintain the offset free behavior in the face of abrupt changes in model parameters and unmeasured disturbances. This methodology is applied on benchmark three-tank system; the proposed FTC approach facilitates recovery of the closed loop performance after the faults have been isolated leading to an offset free behavior in the presence of sensor/actuator faults that can be either abrupt or drift change in biases. Analysis of the simulation results reveals that the proposed approach provides an effective method for treating faults (biases/drifts in sensors/actuators, changes in model parameters and unmeasured disturbances) under the unified framework of robust fault tolerant control.  相似文献   

15.
Actuator faults are inevitable but affect reliability and safety of unmanned helicopters (UHs), especially when there are actuator constraints. In this paper, self-healing control, which is an extended active fault-tolerant control (FTC) method with reference redesign on-line, is proposed to analyze and to guarantee the safety of single-rotor UHs (SUHs) under both actuator faults and constraints. The safety includes body safety and mission safety. More specifically, body safety represents the stability of SUH itself and mission safety represents mission accomplishment with acceptable performance, furthermore, set-point tracking mission is considered. The main contribution of this paper is to analyze and to guarantee the safety of SUHs by solving a set of Linear Matrix Inequalities (LMIs) at one time. The set of LMIs includes saturation compensator design and stability guaranty with a given controller in the absence of actuator constraints, actuator fault compensation analysis, reference reachability analysis and reference redesign. On the other hand, by adding swashplate configuration, SUH model with real actuator outputs as control inputs is constructed which can describe actuator faults more clearly compared to SUH models with nominal control inputs. Finally, the proposed self-healing control method is illustrated by simulation with a nonlinear SUH model.  相似文献   

16.
In this paper, a fault estimation and fault-tolerant control problem for a class of T-S fuzzy stochastic time-delay systems with actuator and sensor faults is investigated. A novel sliding mode observer is proposed, which can simultaneously estimate the system states, actuator and sensor faults with good accuracy. Based on the state and actuator fault estimation, a new sliding mode control scheme is developed, which can effectively eliminate the influence of actuator fault. Sufficient conditions for the existence of the proposed observer and fault-tolerant sliding mode controller are provided in terms of linear matrix inequality, and moreover, the reachability of the sliding mode surface can be guaranteed under the proposed control scheme. The propose sliding mode observer and fault-tolerant sliding mode controller can overcome the restrictive assumption that the input matrix of all local modes is the same. Finally, a numerical example is provided to verify the effectiveness of the proposed sliding mode observer and fault-tolerant sliding mode control technique.  相似文献   

17.
Ideally, when faults happen, the closed-loop system should be capable of maintaining its present operation. This leads to the recently studied area of fault-tolerant control (FTC). This paper addresses soft computing and signal processing based active FTC for benchmark process. Design of FTC has three levels: Level 1 comprises a traditional control loop with sensor and actuator interface and the controller. Level 2 comprises the functions of online fault detection and identification. Level 3 comprises the supervisor functionality. Online fault detection and identification has signal processing module, feature extraction module, feature cluster module and fault decision module. Wavelet analysis has been used for signal processing module. In the feature extraction module, feature vector of the sensor faults has been constructed using wavelet analysis, sliding window, absolute maximum value changing ratio and variance changing ratio as a statistical analysis. For the feature cluster module, the self-organizing map (SOM), which is a subtype of artificial neural network has been applied as a classifier of the feature vector. As a benchmark process three-tank system has been used. Control of the three-tank system is provided by fuzzy logic controller. Faults are applied to three level sensors. Sensor faults represent incorrect reading from the sensors that the system is equipped with. When a particular fault occurs in the system, a suitable control scheme has been selected on-line by supervisor functionality to maintain the closed-loop performance of the system. Active FTC has been achieved by switch mode control using fuzzy logic controller. Simulation results show that benchmark process has maintained acceptable performance with FTC for the sensor faults. As a result, when the system has sensor faults soft computing and signal processing based FTC helps for the best performance of the system.  相似文献   

18.
This article presents an integrated fault diagnosis and fault-tolerant control (FTC) methodology for a class of nonlinear multi-input–multi-output systems. Based on the fault information obtained during the diagnostic procedure, an FTC component is designed to compensate for the effect of faults. In the presence of a fault, a baseline controller guarantees the boundedness of all the system signals until the fault is detected. After fault detection and then again after isolation, the controller is reconfigured to improve the tracking performance using online fault diagnostic information. Under certain assumptions, the stability and tracking performances of the closed-loop system are rigorously investigated. It is shown that the system signals always remain bounded and the output tracking error converges to a neighbourhood of the origin of the state space.  相似文献   

19.
This paper investigates fault-tolerant control (FTC) for feedback linearisable systems (FLSs) and its application to an aircraft. To ensure desired transient and steady-state behaviours of the tracking error under actuator faults, the dynamic effect caused by the actuator failures on the error dynamics of a transformed model is analysed, and three control strategies are designed. The first FTC strategy is proposed as a robust controller, which relies on the explicit information about several parameters of the actuator faults. To eliminate the need for these parameters and the input chattering phenomenon, the robust control law is later combined with the adaptive technique to generate the adaptive FTC law. Next, the adaptive control law is further improved to achieve the prescribed performance under more severe input disturbance. Finally, the proposed control laws are applied to an air-breathing hypersonic vehicle (AHV) subject to actuator failures, which confirms the effectiveness of the proposed strategies.  相似文献   

20.
针对含有外部扰动和执行器故障的一类航天器姿态控制系统,本文提出基于迭代学习观测器的主动容错控制方案.首先,建立了含有外部扰动和执行器故障的航天器姿态控制系统的运动学和动力学模型.其次,为了提高观测器的故障估计精度,在传统迭代学习观测器设计基础上引入上一时刻状态估计误差信息,文章提出一种改进型学习估计算法.进一步,基于滑模控制和指定时间稳定理论,利用学习观测器的故障估计信息设计指定时间主动容错控制器.与现有的航天器主动容错控制方案相比,本文所提出的算法的优势在于可以使故障系统的姿态能在指定时间跟踪上指令信号.基于Lyapunov方法,本文从理论上证明了改进型学习观测器和姿态容错控制系统的稳定性.最后,通过数值仿真,说明了所提容错控制方案的有效性和可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号