首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
This paper proposes a geometrical model for the Particle Motion in a Vector Image Field (PMVIF) method. The model introduces a c-evolute to approximate the edge curve in the gray-level image. The c-evolute concept has three major novelties: (1) The locus of Particle Motion in a Vector Image Field (PMVIF) is a c-evolute of image edge curve; (2) A geometrical interpretation is given to the setting of the parameters for the method based on the PMVIF; (3) The gap between the image edge’s critical property and the particle motion equations appeared in PMVIF is padded. Our experimental simulation based on the image gradient field is simple in computing and robust, and can perform well even in situations where high curvature exists. Chenggang Lu received his Bachelor of Science and PhD degrees from Zhejiang University in 1996 and 2003, respectively. Since 2003, he has been with VIA Software (Hang Zhou), Inc. and Huawei Technology, Inc. His research interests include image processing, acoustic signaling processing, and communication engineering. Zheru Chi received his BEng and MEng degrees from Zhejiang University in 1982 and 1985 respectively, and his PhD degree from the University of Sydney in March 1994, all in electrical engineering. Between 1985 and 1989, he was on the Faculty of the Department of Scientific Instruments at Zhejiang University. He worked as a Senior Research Assistant/Research Fellow in the Laboratory for Imaging Science and Engineering at the University of Sydney from April 1993 to January 1995. Since February 1995, he has been with the Hong Kong Polytechnic University, where he is now an Associate Professor in the Department of Electronic and Information Engineering. Since 1997, he has served on the organization or program committees for a number of international conferences. His research interests include image processing, pattern recognition, and computational intelligence. Dr. Chi has authored/co-authored one book and nine book chapters, and published more than 140 technical papers. Gang Chen received his Bachelor of Science degree from Anqing Teachers College in 1983 and his PhD degree in the Department of Applied Mathematics at Zhejiang University in 1994. Between 1994 and 1996, he was a postdoctoral researcher in electrical engineering at Zhejiang University. From 1997 to 1999, he was a visiting researcher in the Institute of Mathematics at the Chinese University of Hong Kong and the Department of Electronic and Information Engineering at The Hong Kong Polytechnic University. Since 2001, he has been a Professor at Zhejiang University. He has been the Director of the Institute of DSP and Software Techniques at Ningbo University since 2002. His research interests include applied mathematics, image processing, fractal geometry, wavelet analysis and computer graphics. Prof. Chen has co-authored one book, co-edited five technical proceedings and published more than 80 technical papers. (David) Dagan Feng received his ME in Electrical Engineering & Computing Science (EECS) from Shanghai JiaoTong University in 1982, MSc in Biocybernetics and Ph.D in Computer Science from the University of California, Los Angeles (UCLA) in 1985 and 1988 respectively. After briefly working as Assistant Professor at the University of California, Riverside, he joined the University of Sydney at the end of 1988, as Lecturer, Senior Lecturer, Reader, Professor and Head of Department of Computer Science/School of Information Technologies, and Associate Dean of Faculty of Science. He is Chair-Professor of Information Technology, Hong Kong Polytechnic University; Honorary Research Consultant, Royal Prince Alfred Hospital, the largest hospital in Australia; Advisory Professor, Shanghai JiaoTong University; Guest Professor, Northwestern Polytechnic University, Northeastern University and Tsinghua University. His research area is Biomedical & Multimedia Information Technology (BMIT). He is the Founder and Director of the BMIT Research Group. He has published over 400 scholarly research papers, pioneered several new research directions, made a number of landmark contributions in his field with significant scientific impact and social benefit, and received the Crump Prize for Excellence in Medical Engineering from USA. More importantly, however, is that many of his research results have been translated into solutions to real-life problems and have made tremendous improvements to the quality of life worldwide. He is a Fellow of ACS, HKIE, IEE, IEEE, and ATSE, Special Area Editor of IEEE Transactions on Information Technology in Biomedicine, and is the current Chairman of IFAC-TC-BIOMED.  相似文献   

2.
Information service plays a key role in grid system, handles resource discovery and management process. Employing existing information service architectures suffers from poor scalability, long search response time, and large traffic overhead. In this paper, we propose a service club mechanism, called S-Club, for efficient service discovery. In S-Club, an overlay based on existing Grid Information Service (GIS) mesh network of CROWN is built, so that GISs are organized as service clubs. Each club serves for a certain type of service while each GIS may join one or more clubs. S-Club is adopted in our CROWN Grid and the performance of S-Club is evaluated by comprehensive simulations. The results show that S-Club scheme significantly improves search performance and outperforms existing approaches. Chunming Hu is a research staff in the Institute of Advanced Computing Technology at the School of Computer Science and Engineering, Beihang University, Beijing, China. He received his B.E. and M.E. in Department of Computer Science and Engineering in Beihang University. He received the Ph.D. degree in School of Computer Science and Engineering of Beihang University, Beijing, China, 2005. His research interests include peer-to-peer and grid computing; distributed systems and software architectures. Yanmin Zhu is a Ph.D. candidate in the Department of Computer Science, Hong Kong University of Science and Technology. He received his B.S. degree in computer science from Xi’an Jiaotong University, Xi’an, China, in 2002. His research interests include grid computing, peer-to-peer networking, pervasive computing and sensor networks. He is a member of the IEEE and the IEEE Computer Society. Jinpeng Huai is a Professor and Vice President of Beihang University. He serves on the Steering Committee for Advanced Computing Technology Subject, the National High-Tech Program (863) as Chief Scientist. He is a member of the Consulting Committee of the Central Government’s Information Office, and Chairman of the Expert Committee in both the National e-Government Engineering Taskforce and the National e-Government Standard office. Dr. Huai and his colleagues are leading the key projects in e-Science of the National Science Foundation of China (NSFC) and Sino-UK. He has authored over 100 papers. His research interests include middleware, peer-to-peer (P2P), grid computing, trustworthiness and security. Yunhao Liu received his B.S. degree in Automation Department from Tsinghua University, China, in 1995, and an M.A. degree in Beijing Foreign Studies University, China, in 1997, and an M.S. and a Ph.D. degree in computer science and engineering at Michigan State University in 2003 and 2004, respectively. He is now an assistant professor in the Department of Computer Science and Engineering at Hong Kong University of Science and Technology. His research interests include peer-to-peer computing, pervasive computing, distributed systems, network security, grid computing, and high-speed networking. He is a senior member of the IEEE Computer Society. Lionel M. Ni is chair professor and head of the Computer Science and Engineering Department at Hong Kong University of Science and Technology. Lionel M. Ni received the Ph.D. degree in electrical and computer engineering from Purdue University, West Lafayette, Indiana, in 1980. He was a professor of computer science and engineering at Michigan State University from 1981 to 2003, where he received the Distinguished Faculty Award in 1994. His research interests include parallel architectures, distributed systems, high-speed networks, and pervasive computing. A fellow of the IEEE and the IEEE Computer Society, he has chaired many professional conferences and has received a number of awards for authoring outstanding papers.  相似文献   

3.
The rapid development of Internet technologies in recent decades has imposed a heavy information burden on users. This has led to the popularity of recommender systems, which provide advice to users about items they may like to examine. Collaborative Filtering (CF) is the most promising technique in recommender systems, providing personalized recommendations to users based on their previously expressed preferences and those of other similar users. This paper introduces a CF framework based on Fuzzy Association Rules and Multiple-level Similarity (FARAMS). FARAMS extended existing techniques by using fuzzy association rule mining, and takes advantage of product similarities in taxonomies to address data sparseness and nontransitive associations. Experimental results show that FARAMS improves prediction quality, as compared to similar approaches. Cane Wing-ki Leung is a PhD student in the Department of Computing, The Hong Kong Polytechnic University, where she received her BA degree in Computing in 2003. Her research interests include collaborative filtering, data mining and computer-supported collaborative work. Stephen Chi-fai Chan is an Associate Professor and Associate Head of the Department of Computing, The Hong Kong Polytechnic University. Dr. Chan received his PhD from the University of Rochester, USA, worked on computer-aided design at Neo-Visuals, Inc. in Toronto, Canada, and researched in computer-integrated manufacturing at the National Research Council of Canada before joining the Hong Kong Polytechnic University in 1993. He is currently working on the development of collaborative Web-based information systems, with applications in education, electronic commerce, and manufacturing. Fu-lai Chung received his BSc degree from the University of Manitoba, Canada, in 1987, and his MPhil and PhD degrees from the Chinese University of Hong Kong in 1991 and 1995, respectively. He joined the Department of Computing, Hong Kong Polytechnic University in 1994, where he is currently an Associate Professor. He has published widely in the areas of computational intelligence, pattern recognition and recently data mining and multimedia in international journals and conferences and his current research interests include time series data mining, Web data mining, bioinformatics data mining, multimedia content analysis,and new computational intelligence techniques.  相似文献   

4.
The study on database technologies, or more generally, the technologies of data and information management, is an important and active research field. Recently, many exciting results have been reported. In this fast growing field, Chinese researchers play more and more active roles. Research papers from Chinese scholars, both in China and abroad,appear in prestigious academic forums.In this paper,we, nine young Chinese researchers working in the United States, present concise surveys and report our recent progress on the selected fields that we are working on.Although the paper covers only a small number of topics and the selection of the topics is far from balanced, we hope that such an effort would attract more and more researchers,especially those in China,to enter the frontiers of database research and promote collaborations. For the obvious reason, the authors are listed alphabetically, while the sections are arranged in the order of the author list.  相似文献   

5.
Summary Algorithms for mutual exclusion that adapt to the current degree of contention are developed. Afilter and a leader election algorithm form the basic building blocks. The algorithms achieve system response times that are independent of the total number of processes and governed instead by the current degree of contention. The final algorithm achieves a constant amortized system response time. Manhoi Choy was born in 1967 in Hong Kong. He received his B.Sc. in Electrical and Electronic Engineerings from the University of Hong Kong in 1989, and his M.Sc. in Computer Science from the University of California at Santa Barbara in 1991. Currently, he is working on his Ph.D. in Computer Science at the University of California at Santa Barbara. His research interests are in the areas of parallel and distributed systems, and distributed algorithms. Ambuj K. Singh is an Assistant Professor in the Department of Computer Science at the University of California, Santa Barbara. He received a Ph.D. in Computer Science from the University of Texas at Austin in 1989, an M.S. in Computer Science from Iowa State University in 1984, and a B.Tech. from the Indian Institute of Technology at Kharagpur in 1982. His research interests are in the areas of adaptive resource allocation, concurrent program development, and distributed shared memory.A preliminary version of the paper appeared in the 12th Annual ACM Symposium on Principles of Distributed ComputingWork supported in part by NSF grants CCR-9008628 and CCR-9223094  相似文献   

6.
7.
Outlier detection is concerned with discovering exceptional behaviors of objects. Its theoretical principle and practical implementation lay a foundation for some important applications such as credit card fraud detection, discovering criminal behaviors in e-commerce, discovering computer intrusion, etc. In this paper, we first present a unified model for several existing outlier detection schemes, and propose a compatibility theory, which establishes a framework for describing the capabilities for various outlier formulation schemes in terms of matching users'intuitions. Under this framework, we show that the density-based scheme is more powerful than the distance-based scheme when a dataset contains patterns with diverse characteristics. The density-based scheme, however, is less effective when the patterns are of comparable densities with the outliers. We then introduce a connectivity-based scheme that improves the effectiveness of the density-based scheme when a pattern itself is of similar density as an outlier. We compare density-based and connectivity-based schemes in terms of their strengths and weaknesses, and demonstrate applications with different features where each of them is more effective than the other. Finally, connectivity-based and density-based schemes are comparatively evaluated on both real-life and synthetic datasets in terms of recall, precision, rank power and implementation-free metrics. Jian Tang received an MS degree from the University of Iowa in 1983, and PhD from the Pennsylvania State University in 1988, both from the Department of Computer Science. He joined the Department of Computer Science, Memorial University of Newfoundland, Canada, in 1988, where he is currently a professor. He has visited a number of research institutions to conduct researches ranging over a variety of topics relating to theories and practices for database management and systems. His current research interests include data mining, e-commerce, XML and bioinformatics. Zhixiang Chen is an associate professor in the Computer Science Department, University of Texas-Pan American. He received his PhD in computer science from Boston University in January 1996, BS and MS degrees in software engineering from Huazhong University of Science and Technology. He also studied at the University of Illinois at Chicago. He taught at Southwest State University from Fall 1995 to September 1997, and Huazhong University of Science and Technology from 1982 to 1990. His research interests include computational learning theory, algorithms and complexity, intelligent Web search, informational retrieval, and data mining. Ada Waichee Fu received her BSc degree in computer science in the Chinese University of Hong Kong in 1983, and both MSc and PhD degrees in computer science in Simon Fraser University of Canada in 1986, 1990, respectively; worked at Bell Northern Research in Ottawa, Canada, from 1989 to 1993 on a wide-area distributed database project; joined the Chinese University of Hong Kong in 1993. Her research interests are XML data, time series databases, data mining, content-based retrieval in multimedia databases, parallel, and distributed systems. David Wai-lok Cheung received the MSc and PhD degrees in computer science from Simon Fraser University, Canada, in 1985 and 1989, respectively. He also received the BSc degree in mathematics from the Chinese University of Hong Kong. From 1989 to 1993, he was a member of Scientific Staff at Bell Northern Research, Canada. Since 1994, he has been a faculty member of the Department of Computer Science in the University of Hong Kong. He is also the Director of the Center for E-Commerce Infrastructure Development. His research interests include data mining, data warehouse, XML technology for e-commerce and bioinformatics. Dr. Cheung was the Program Committee Chairman of the Fifth Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2001), Program Co-Chair of the Ninth Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2005). Dr. Cheung is a member of the ACM and the IEEE Computer Society.  相似文献   

8.
This paper introduces a new algorithm of mining association rules.The algorithm RP counts the itemsets with different sizes in the same pass of scanning over the database by dividing the database into m partitions.The total number of pa sses over the database is only(k 2m-2)/m,where k is the longest size in the itemsets.It is much less than k .  相似文献   

9.
In nowadays World Wide Web topology, it is not difficult to find the presence of proxy servers. They reduce network traffic through the cut down of repetitive information. However, traditional proxy server does not support multimedia streaming. One of the reasons is that general scheduling strategy adopted by most of the traditional proxy servers does not provide real-time support to multimedia services. Based on the concept of contractual scheduling, we have developed a proxy server that supports real-time multimedia applications. Moreover, we developed the group scheduling mechanism to enable processing power transfer between tasks that can hardly be achieved by traditional schedulers. They result in a substantially improved performance particularly when both time-constrained and non-time-constrained processes coexist within the proxy server. In this paper, the design and implementation of this proxy server and the proposed scheduler are detailed. Wai-Kong Cheuk received the B.Eng. (Hons.) and M. Phil. degrees in 1996 and 2001, respectively, from the Hong Kong Polytechnic University, where he is currently pursuing the Ph.D. degree. His main research interests include distributed operating systems and video streaming. Tai-Chiu Hsung (M'93) received the B.Eng. (Hons.) and Ph.D. degrees in electronic and information engineering in 1993 and 1998, respectively, from the Hong Kong Polytechnic University, Hong Kong. In 1999, he joined the Hong Kong Polytechnic University as a Research Fellow. His research interests include wavelet theory and applications, tomography, and fast algorithms. Dr. Hsung is also a member of IEE. Daniel Pak-Kong Lun (M'91) received his B.Sc. (Hons.) degree from the University of Essex, Essex, U.K., and the Ph.D. degree from the Hong Kong Polytechnic University, Hung Hom, Hong Kong, in 1988 and 1991, respectively. He is currently an Associate Professor and the Associate Head of the Department of Electronic and Information Engineering, the Hong Kong Polytechnic University. His research interests include digital signal processing, wavelets, multimedia technology, and Internet technology. Dr. Lun was the Secretary, Treasurer, Vice-Chairman, and Chairman of the IEEE Hong Kong Chapter of Signal Processing in 1994, 1995–1996, 1997–1998, 1999–2000, respectively. He was the Finance Chair of 2003 IEEE International Conference on Acoustics, Speech and Signal Processing, held in Hong Kong, in April 2003. He is a Chartered Engineer and a Corporate member of the IEE.  相似文献   

10.
In this paper, we study the problem of efficiently computing k-medians over high-dimensional and high speed data streams. The focus of this paper is on the issue of minimizing CPU time to handle high speed data streams on top of the requirements of high accuracy and small memory. Our work is motivated by the following observation: the existing algorithms have similar approximation behaviors in practice, even though they make noticeably different worst case theoretical guarantees. The underlying reason is that in order to achieve high approximation level with the smallest possible memory, they need rather complex techniques to maintain a sketch, along time dimension, by using some existing off-line clustering algorithms. Those clustering algorithms cannot guarantee the optimal clustering result over data segments in a data stream but accumulate errors over segments, which makes most algorithms behave the same in terms of approximation level, in practice. We propose a new grid-based approach which divides the entire data set into cells (not along time dimension). We can achieve high approximation level based on a novel concept called (1 - ε)-dominant. We further extend the method to the data stream context, by leveraging a density-based heuristic and frequent item mining techniques over data streams. We only need to apply an existing clustering once to computing k-medians, on demand, which reduces CPU time significantly. We conducted extensive experimental studies, and show that our approaches outperform other well-known approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号