首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The aim of removing camera shake is to estimate a sharp version x from a shaken image y when the blur kernel k is unknown. Recent research on this topic evolved through two paradigms called and . only solves for k by marginalizing the image prior, while recovers both x and k by selecting the mode of the posterior distribution. This paper first systematically analyses the latent limitations of these two estimators through Bayesian analysis. We explain the reason why it is so difficult for image statistics to solve the previously reported failure. Then we show that the leading methods, which depend on efficient prediction of large step edges, are not robust to natural images due to the diversity of edges. , although much more robust to diverse edges, is constrained by two factors: the prior variation over different images, and the ratio between image size and kernel size. To overcome these limitations, we introduce an inter‐scale prior prediction scheme and a principled mechanism for integrating the sharpening filter into . Both qualitative results and extensive quantitative comparisons demonstrate that our algorithm outperforms state‐of‐the‐art methods.  相似文献   

2.
We present anefficient algorithm for determining an aesthetically pleasing shape boundary connecting all the points in a given unorganized set of 2D points, with no other information than point coordinates. By posing shape construction as a minimisation problem which follows the Gestalt laws, our desired shape is non‐intersecting, interpolates all points and minimizes a criterion related to these laws. The basis for our algorithm is an initial graph, an extension of the Euclidean minimum spanning tree but with no leaf nodes, called as the minimum boundary complex . and can be expressed similarly by parametrizing a topological constraint. A close approximation of , termed can be computed fast using a greedy algorithm. is then transformed into a closed interpolating boundary in two steps to satisfy ’s topological and minimization requirements. Computing exactly is an NP (Non‐Polynomial)‐hard problem, whereas is computed in linearithmic time. We present many examples showing considerable improvement over previous techniques, especially for shapes with sharp corners. Source code is available online.  相似文献   

3.
Synthesizing and exploring large‐scale realistic urban road networks is beneficial to 3D content creation, traffic animation and urban planning. In this paper, we present an interactive tool that allows untrained users to design roads with complex realistic details and styles. Roads are generated by growing a geometric graph. During a sketching phase, the user specifies the target area and the examples. During a growing phase, two types of growth are effectively applied to generate roads in the target area; example‐based growth uses patches extracted from the source example to generate roads that preserve some interesting structures in the example road networks; procedural‐based growth uses the statistical information of the source example while effectively adapting the roads to the underlying terrain and the already generated roads. User‐specified warping, blending and interpolation operations are used at will to produce new road network designs that are inspired by the examples. Finally, our method computes city blocks, individual parcels and plausible building and tree geometries. We have used our approach to create road networks covering up to 200 and containing over 3500 km of roads.  相似文献   

4.
In this paper, we present revectorization-based soft shadow mapping, an algorithm that enables the rendering of visually plausible anti-aliased soft shadows in real time. In revectorization-based shadow mapping, shadow silhouettes are anti-aliased and filtered on the basis of a discontinuity space. By replacing the filtering step of the theoretical framework of the percentage-closer soft shadow algorithm by a revectorization-based filtering algorithm, we are able to provide anti-aliasing mainly for near contact shadows or small penumbra sizes generated from low-resolution shadow maps. Moreover, we present a screen-space variant of our technique that generates visually plausible soft shadows with an overhead of only in processing time, when compared to the fastest soft shadow algorithms proposed in the literature, but that introduces shadow overestimation artefacts in the final rendering.  相似文献   

5.
SecondSkin estimates an appearance model for an object visible in a video sequence, without the need for complex interaction or any calibration apparatus. This model can then be transferred to other objects, allowing a non‐expert user to insert a synthetic object into a real video sequence so that its appearance matches that of an existing object, and changes appropriately throughout the sequence. As the method does not require any prior knowledge about the scene, the lighting conditions, or the camera, it is applicable to video which was not captured with this purpose in mind. However, this lack of prior knowledge precludes the recovery of separate lighting and surface reflectance information. The SecondSkin appearance model therefore combines these factors. The appearance model does require a dominant light‐source direction, which we estimate via a novel process involving a small amount of user interaction. The resulting model estimate provides exactly the information required to transfer the appearance of the original object to new geometry composited into the same video sequence.  相似文献   

6.
We propose to enhance the capabilities of the human visual system by performing optical image processing directly on an observed scene. Unlike previous work which additively superimposes imagery on a scene, or completely replaces scene imagery with a manipulated version, we perform all manipulation through the use of a light modulation display to spatially filter incoming light. We demonstrate a number of perceptually motivated algorithms including contrast enhancement and reduction, object highlighting for preattentive emphasis, colour saturation, de‐saturation and de‐metamerization, as well as visual enhancement for the colour blind. A camera observing the scene guides the algorithms for on‐the‐fly processing, enabling dynamic application scenarios such as monocular scopes, eyeglasses and windshields.  相似文献   

7.
Measuring the spectral power distribution of a light source, that is, the emission as a function of wavelength, typically requires the use of spectrophotometers or multi‐spectral cameras. Here, we propose a low‐cost system that enables the recovery of the visible light spectral signature of different types of light sources without requiring highly complex or specialized equipment and using just off‐the‐shelf, widely available components. To do this, a standard Digital Single‐Lens Reflex (DSLR) camera and a diffraction filter are used, sacrificing the spatial dimension for spectral resolution. We present here the image formation model and the calibration process necessary to recover the spectrum, including spectral calibration and amplitude recovery. We also assess the robustness of our method and perform a detailed analysis exploring the parameters influencing its accuracy. Further, we show applications of the system in image processing and rendering.  相似文献   

8.
High‐quality video editing usually requires accurate layer separation in order to resolve occlusions. However, most of the existing bilayer segmentation algorithms require either considerable user intervention or a simple stationary camera configuration with known background, which is difficult to meet for many real world online applications. This paper demonstrates that various visually appealing montage effects can be online created from a live video captured by a rotating camera, by accurately retrieving the camera state and segmenting out the dynamic foreground. The key contribution is that a novel fast bilayer segmentation method is proposed which can effectively extract the dynamic foreground under rotational camera configuration, and is robust to imperfect background estimation and complex background colors. Our system can create a variety of live visual effects, including but not limited to, realistic virtual object insertion, background substitution and blurring, non‐photorealistic rendering and camouflage effect. A variety of challenging examples demonstrate the effectiveness of our method.  相似文献   

9.
Choosing balls that best approximate a 3D object is a non‐trivial problem. To answer it, we first address the inner approximation problem, which consists of approximating an object defined by a union of n balls with balls defining a region . This solution is further used to construct an outer approximation enclosing the initial shape, and an interpolated approximation sandwiched between the inner and outer approximations. The inner approximation problem is reduced to a geometric generalization of weighted max k‐cover, solved with the greedy strategy which achieves the classical lower bound. The outer approximation is reduced to exploiting the partition of the boundary of by the Apollonius Voronoi diagram of the balls defining the inner approximation. Implementation‐wise, we present robust software incorporating the calculation of the exact Delaunay triangulation of points with degree two algebraic coordinates, of the exact medial axis of a union of balls, and of a certified estimate of the volume of a union of balls. Application‐wise, we exhibit accurate coarse‐grain molecular models using a number of balls 20 times smaller than the number of atoms, a key requirement to simulate crowded cellular environments.  相似文献   

10.
Recent photography techniques such as sculpting with light show great potential in compositing beautiful images from fixed‐viewpoint photos under multiple illuminations. The process relies heavily on the artists’ experience and skills using the available tools. An apparent trend in recent works is to facilitate the interaction making it less time‐consuming and addressable not only to experts, but also novices. We propose a method that automatically creates enhanced light montages that are comparable to those produced by artists. It detects and emphasizes cues that are important for perception by introducing a technique to extract depth and shape edges from an unconstrained light stack. Studies show that these cues are associated with silhouettes and suggestive contours which artists use to sketch and construct the layout of paintings. Textures, due to perspective distortion, offer essential cues that depict shape and surface slant. We balance the emphasis between depth edges and reflectance textures to enhance the sense of both shape and reflectance properties. Our light montage technique works perfectly with a few to hundreds of illuminations for each scene. Experiments show great results for static scenes making it practical for small objects, interiors and small‐scale outdoor scenes. Dynamic scenes may be captured using spatially distributed light setups such as light domes. The approach could also be applied to time‐lapse photos, with the sun as the main light source.  相似文献   

11.
Capturing exposure sequences to compute high dynamic range (HDR) images causes motion blur in cases of camera movement. This also applies to light‐field cameras: frames rendered from multiple blurred HDR light‐field perspectives are also blurred. While the recording times of exposure sequences cannot be reduced for a single‐sensor camera, we demonstrate how this can be achieved for a camera array. Thus, we decrease capturing time and reduce motion blur for HDR light‐field video recording. Applying a spatio‐temporal exposure pattern while capturing frames with a camera array reduces the overall recording time and enables the estimation of camera movement within one light‐field video frame. By estimating depth maps and local point spread functions (PSFs) from multiple perspectives with the same exposure, regional motion deblurring can be supported. Missing exposures at various perspectives are then interpolated.  相似文献   

12.
We advocate the use of quickly‐adjustable, computer‐controlled color spectra in photography, lighting and displays. We present an optical relay system that allows mechanical or electronic color spectrum control and use it to modify a conventional camera and projector. We use a diffraction grating to disperse the rays into different colors, and introduce a mask (or LCD/DMD) in the optical path to modulate the spectrum. We analyze the trade‐offs and limitations of this design, and demonstrate its use in a camera, projector and light source. We propose applications such as adaptive color primaries, metamer detection, scene contrast enhancement, photographing fluorescent objects, and high dynamic range photography using spectrum modulation.  相似文献   

13.
Image blur caused by object motion attenuates high frequency content of images, making post‐capture deblurring an ill‐posed problem. The recoverable frequency band quickly becomes narrower for faster object motion as high frequencies are severely attenuated and virtually lost. This paper proposes to translate a camera sensor circularly about the optical axis during exposure, so that high frequencies can be preserved for a wide range of in‐plane linear object motion in any direction within some predetermined speed. That is, although no object may be photographed sharply at capture time, differently moving objects captured in a single image can be deconvolved with similar quality. In addition, circular sensor motion is shown to facilitate blur estimation thanks to distinct frequency zero patterns of the resulting motion blur point‐spread functions. An analysis of the frequency characteristics of circular sensor motion in relation to linear object motion is presented, along with deconvolution results for photographs captured with a prototype camera.  相似文献   

14.
This paper presents methods for photo‐realistic rendering using strongly spatially variant illumination captured from real scenes. The illumination is captured along arbitrary paths in space using a high dynamic range, HDR, video camera system with position tracking. Light samples are rearranged into 4‐D incident light fields (ILF) suitable for direct use as illumination in renderings. Analysis of the captured data allows for estimation of the shape, position and spatial and angular properties of light sources in the scene. The estimated light sources can be extracted from the large 4D data set and handled separately to render scenes more efficiently and with higher quality. The ILF lighting can also be edited for detailed artistic control.  相似文献   

15.
Color transfer is an image processing technique which can produce a new image combining one source image's contents with another image's color style. While being able to produce convincing results, however, Reinhard et al.'s pioneering work has two problems—mixing up of colors in different regions and the fidelity problem. Many local color transfer algorithms have been proposed to resolve the first problem, but the second problem was paid few attentions. In this paper, a novel color transfer algorithm is presented to resolve the fidelity problem of color transfer in terms of scene details and colors. It's well known that human visual system is more sensitive to local intensity differences than to intensity itself. We thus consider that preserving the color gradient is necessary for scene fidelity. We formulate the color transfer problem as an optimization problem and solve it in two steps—histogram matching and a gradient‐preserving optimization. Following the idea of the fidelity in terms of color and gradient, we also propose a metric for objectively evaluating the performance of example‐based color transfer algorithms. The experimental results show the validity and high fidelity of our algorithm and that it can be used to deal with local color transfer.  相似文献   

16.
We introduce a practical partitioning technique designed for parallelizing Position Based Dynamics, and exploiting the ubiquitous multi‐core processors present in current commodity GPUs. The input is a set of particles whose dynamics is influenced by spatial constraints. In the initialization phase, we build a graph in which each node corresponds to a constraint and two constraints are connected by an edge if they influence at least one common particle. We introduce a novel greedy algorithm for inserting additional constraints (phantoms) in the graph such that the resulting topology is ‐colourable, where is an arbitrary number. We color the graph, and the constraints with the same color are assigned to the same partition. Then, the set of constraints belonging to each partition is solved in parallel during the animation phase. We demonstrate this by using our partitioning technique; the performance hit caused by the GPU kernel calls is significantly decreased, leaving unaffected the visual quality, robustness and speed of serial position based dynamics.  相似文献   

17.
This paper proposes an algorithm which uses image registration to estimate a non‐uniform motion blur point spread function (PSF) caused by camera shake. Our study is based on a motion blur model which models blur effects of camera shakes using a set of planar perspective projections (i.e., homographies). This representation can fully describe motions of camera shakes in 3D which cause non‐uniform motion blurs. We transform the non‐uniform PSF estimation problem into a set of image registration problems which estimate homographies of the motion blur model one‐by‐one through the Lucas‐Kanade algorithm. We demonstrate the performance of our algorithm using both synthetic and real world examples. We also discuss the effectiveness and limitations of our algorithm for non‐uniform deblurring.  相似文献   

18.
We present a novel method to estimate an approximation of the reflectance characteristics of optically thick, homogeneous translucent materials using only a single photograph as input. First, we approximate the diffusion profile as a linear combination of piecewise constant functions, an approach that enables a linear system minimization and maximizes robustness in the presence of suboptimal input data inferred from the image. We then fit to a smoother monotonically decreasing model, ensuring continuity on its first derivative. We show the feasibility of our approach and validate it in controlled environments, comparing well against physical measurements from previous works. Next, we explore the performance of our method in uncontrolled scenarios, where neither lighting nor geometry are known. We show that these can be roughly approximated from the corresponding image by making two simple assumptions: that the object is lit by a distant light source and that it is globally convex, allowing us to capture the visual appearance of the photographed material. Compared with previous works, our technique offers an attractive balance between visual accuracy and ease of use, allowing its use in a wide range of scenarios including off‐the‐shelf, single images, thus extending the current repertoire of real‐world data acquisition techniques.  相似文献   

19.
This article focuses on real‐time image correction techniques that enable projector‐camera systems to display images onto screens that are not optimized for projections, such as geometrically complex, coloured and textured surfaces. It reviews hardware‐accelerated methods like pixel‐precise geometric warping, radiometric compensation, multi‐focal projection and the correction of general light modulation effects. Online and offline calibration as well as invisible coding methods are explained. Novel attempts in super‐resolution, high‐dynamic range and high‐speed projection are discussed. These techniques open a variety of new applications for projection displays. Some of them will also be presented in this report.  相似文献   

20.
Videos captured by consumer cameras often exhibit temporal variations in color and tone that are caused by camera auto‐adjustments like white‐balance and exposure. When such videos are sub‐sampled to play fast‐forward, as in the increasingly popular forms of timelapse and hyperlapse videos, these temporal variations are exacerbated and appear as visually disturbing high frequency flickering. Previous techniques to photometrically stabilize videos typically rely on computing dense correspondences between video frames, and use these correspondences to remove all color changes in the video sequences. However, this approach is limited in fast‐forward videos that often have large content changes and also might exhibit changes in scene illumination that should be preserved. In this work, we propose a novel photometric stabilization algorithm for fast‐forward videos that is robust to large content‐variation across frames. We compute pairwise color and tone transformations between neighboring frames and smooth these pair‐wise transformations while taking in account the possibility of scene/content variations. This allows us to eliminate high‐frequency fluctuations, while still adapting to real variations in scene characteristics. We evaluate our technique on a new dataset consisting of controlled synthetic and real videos, and demonstrate that our techniques outperforms the state‐of‐the‐art.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号