首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
针对基于权重法的多目标算法无法求解约束多目标问题的缺陷,将中心粒子群算法与Pareto解集搜索算法相结合,提出一种Pareto多目标中心粒子群算法。将此方法用来优化气门弹簧的模型,实验结果表明,该优化方法能够快速准确地收敛于Pa-reto解集,并且使其对应的目标域均匀地分布于Pareto最优目标域。  相似文献   

2.
Among population-based optimization algorithms guided by meta-heuristics, Particle Swarm Optimization (PSO) has gained significant popularity in the past two decades, particularly due to its ease of implementation and fast convergence capabilities. This paper seeks to translate the beneficial features of PSO from solving typical continuous single-objective problems to solving multi-objective mixed-discrete problems, which is relatively a new ground for PSO application. The original Mixed-Discrete PSO (MDPSO) algorithm, which included an exclusive diversity preservation technique to significantly mitigate premature particle clustering, has been shown to be a powerful single-objective solver for highly constrained MINLP problems. This papers makes fundamental advancements to MDPSO, enabling it to solve complex multi-objective problems with mixed-discrete design variables. Specifically, in the velocity update equation for any particle, the explorative term is modified to point towards a stochastically selected non-dominated solution at that iteration ? thereby adopting the concept of multi-leader swarms. The fractional domain in the diversity preservation technique, which was previously defined in terms of the best global particle, is now formulated as a function of the extreme members in the set of intermediate Pareto optimal solutions. With this advancement, diversity preservation not only mitigates premature particle stagnation, but also promotes more uniform coverage of the Pareto frontier. The multi-objective MDPSO algorithm is tested using a set of benchmark problems and a wind farm layout optimization problem. To illustrate the competitive benefits of the new MO-MDPSO algorithm, the results are compared with those given by other popular multi-objective solvers such as NSGA-II and SPEA.  相似文献   

3.
Robust design optimisation using multi-objective evolutionary algorithms   总被引:1,自引:0,他引:1  
In this paper, a new robust design method is investigated with a hierarchical asynchronous parallel multi-objective evolutionary algorithms in an optimisation framework environment to solve single and multi-point design optimisation problems in aerodynamics. The single design techniques produce solutions that perform well for the selected design point but have poor off-design performance. Here, it is shown how the approach can provide robust solutions using game theory in the sense that they are less sensitive to little changes of input parameters. Starting from a statistical definition of stability, the method captures, simultaneously Pareto non-dominated solutions with respect to performance and stability criteria, offering alternative choices to the designer.  相似文献   

4.
A hybrid sliding level Taguchi-based particle swarm optimization (HSLTPSO) algorithm is proposed for solving multi-objective flowshop scheduling problems (FSPs). The proposed HSLTPSO integrates particle swarm optimization, sliding level Taguchi-based crossover, and elitist preservation strategy. The novel contribution of the proposed HSLTPSO is the use of a PSO to explore the optimal feasible region in macro-space, the use of a systematic reasoning mechanism of the sliding level Taguchi-based crossover to exploit the better solution in micro-space, and the use of the elitist preservation strategy to retain the best particles of multi-objective population for next iteration. The sliding level Taguchi-based crossover is embedded in the PSO to find the best solutions and consequently enhance the PSO. Using the systematic reasoning way of the Taguchi-based crossover with considering the influence of tuning factors α, β and γ is presented in this study to solve the conflicting problem of non-feasible solutions and to find the better particles. As a result, it exhibits a significant improvement in Pareto best solutions of the FSP. By combining the advantages of exploration and exploitation, from the computational experiments of the six test problems, the HSLTPSO provides better results compared to the existing methods reported in the literature when solving multi-objective FSPs. Therefore, the HSLTPSO is an effective approach in solving multi-objective FSPs.  相似文献   

5.
In particle swarm optimization (PSO) each particle uses its personal and global or local best positions by linear summation. However, it is very time consuming to find the global or local best positions in case of complex problems. To overcome this problem, we propose a new multi-objective variant of PSO called attributed multi-objective comprehensive learning particle swarm optimizer (A-MOCLPSO). In this technique, we do not use global or local best positions to modify the velocity of a particle; instead, we use the best position of a randomly selected particle from the whole population to update the velocity of each dimension. This method not only increases the speed of the algorithm but also searches in more promising areas of the search space. We perform an extensive experimentation on well-known benchmark problems such as Schaffer (SCH), Kursawa (KUR), and Zitzler–Deb–Thiele (ZDT) functions. The experiments show very convincing results when the proposed technique is compared with existing versions of PSO known as multi-objective comprehensive learning particle swarm optimizer (MOCLPSO) and multi-objective particle swarm optimization (MOPSO), as well as non-dominated sorting genetic algorithm II (NSGA-II). As a case study, we apply our proposed A-MOCLPSO algorithm on an attack tree model for the security hardening problem of a networked system in order to optimize the total security cost and the residual damage, and provide diverse solutions for the problem. The results of our experiments show that the proposed algorithm outperforms the previous solutions obtained for the security hardening problem using NSGA-II, as well as MOCLPSO for the same problem. Hence, the proposed algorithm can be considered as a strong alternative to solve multi-objective optimization problems.  相似文献   

6.
邹锋  陈得宝  王江涛 《计算机应用》2010,30(7):1885-1888
针对有约束条件的多目标优化问题,提出了一种求解带约束的基于内分泌思想的多目标粒子群算法。利用不可行度方法和约束主导原理指导进化过程中精英种群的选择操作和约束条件的处理,根据生物体激素调节机制中促激素和释放激素间的相互作用原理,考虑当前非劣解集中的个体对其最邻近的一类群体的监督控制,引入当前粒子的类全局最优位置来反映其所属类中最好位置粒子对当前粒子的影响。为验证多目标约束优化算法的有效性,对两个典型的多目标优化问题进行了仿真实验,仿真结果表明该算法能较大概率地获得多目标约束优化问题的可行Pareto最优解。  相似文献   

7.
Integration of process planning and scheduling (IPPS) is an important research issue to achieve manufacturing planning optimisation. In both process planning and scheduling, vast search spaces and complex technical constraints are significant barriers to the effectiveness of the processes. In this paper, the IPPS problem has been developed as a combinatorial optimisation model, and a modern evolutionary algorithm, i.e., the particle swarm optimisation (PSO) algorithm, has been modified and applied to solve it effectively. Initial solutions are formed and encoded into particles of the PSO algorithm. The particles “fly” intelligently in the search space to achieve the best sequence according to the optimisation strategies of the PSO algorithm. Meanwhile, to explore the search space comprehensively and to avoid being trapped into local optima, several new operators have been developed to improve the particles’ movements to form a modified PSO algorithm. Case studies have been conducted to verify the performance and efficiency of the modified PSO algorithm. A comparison has been made between the result of the modified PSO algorithm and the previous results generated by the genetic algorithm (GA) and the simulated annealing (SA) algorithm, respectively, and the different characteristics of the three algorithms are indicated. Case studies show that the developed PSO can generate satisfactory results in both applications.  相似文献   

8.
针对带有约束多目标优化问题,提出一种多目标优化进化算法。在选择过程中,采用约束的Pareto支配和聚集距离定义适应值,根据适应值挑选出有代表性的个体。在变异过程中,沿着权重梯度方向搜索来寻找可行的Pareto最优解。最后,采用两个数值算例测草算法的性能,结果表明该算法能获得多目标约束优化问题的可行Pareto最优解并且具有较好的分散性。  相似文献   

9.
自适应进化多目标粒子群优化算法   总被引:8,自引:0,他引:8  
提出一种自适应进化粒子群优化算法以求解多目标优化问题.采用非支配排序策略和动态加权法选择最优粒子,引导种群飞行,提高Pareto解的多样性.采用动态惯性权重,提高其全局寻优能力.当种群的寻优能力减弱时,采用变异操作以引导粒子群跳出局部最优.通过ZDT1~ZDT4 基准函数验证,该算法能够在保持优化解多样性的同时实现较好的收敛性.与其他多目标进化算法和多目标粒子群优化算法相比,该算法具有较好的性能.  相似文献   

10.
Several variants of the particle swarm optimization (PSO) algorithm have been proposed in recent past to tackle the multi-objective optimization (MO) problems based on the concept of Pareto optimality. Although a plethora of significant research articles have so far been published on analysis of the stability and convergence properties of PSO as a single-objective optimizer, till date, to the best of our knowledge, no such analysis exists for the multi-objective PSO (MOPSO) algorithms. This paper presents a first, simple analysis of the general Pareto-based MOPSO and finds conditions on its most important control parameters (the inertia factor and acceleration coefficients) that govern the convergence behavior of the algorithm to the optimal Pareto front in the objective function space. Computer simulations over benchmark MO problems have also been provided to substantiate the theoretical derivations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号