首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
基于支持向量机的非线性系统预测控制   总被引:3,自引:0,他引:3       下载免费PDF全文
张日东  王树青  李平 《自动化学报》2007,33(10):1066-1073
针对离散非线性系统, 提出一种可用于非线性过程的支持向量机预测控制方法, 并给出了控制律的收敛性分析. 该方法将复杂的非线性预测方程转化成直观而有效的线性形式, 同时利用线性预测控制方法求得解析的控制律, 避免了复杂的非线性优化求解, 对非线性工业焦化装置温度控制的仿真结果表明了算法的有效性.  相似文献   

2.
基于支持向量机的非线性预测控制技术   总被引:17,自引:1,他引:16  
探讨了利用支持向量机进行非线性系统辨识的方法,并将支持向量机模型应用到非线性预测控制,提出了基于支持向量机模型的非线性预测控制算法.对一个CSTR反应器的仿真表明,支持向量机在小样本情况下具有良好的非线性建模能力和泛化能力.基于支持向量机的预测控制具有很好的控制性能,为通用非线性控制提供了一种新的控制思路.􀁽  相似文献   

3.
基于支持向量机的非线性系统模型预测控制   总被引:5,自引:1,他引:5  
支持向量机是基于统计学习理论的新一代机器学习技术。由于使用结构风险最小化原则代替经验风险最小化原则.使它较好的解决了小样本情况下的学习问题。又由于其采用了核函数思想.使它把非线性问题转化为线性问题来解决,降低了算法的难度.具有全局最优、良好泛化能力等优越性能.得到广泛的研究。基于上述特性提出了一种基于支持向量机的非线性模型预测控制结构.其中使用遗传算法来求解预测控制律.随后用计算机仿真证明了此控制算法的正确性和有效性。  相似文献   

4.
本文针对未知非线性系统,提出了基于支持向量机(SVM)的系统辨识方法,并且通过仿真分析比较了基于SVM与基于RBF神经网络系统辨识及预测结果,仿真结果表明SVM方法比RBF神经网络方法具有更高的预测精度和更好的泛化能力。  相似文献   

5.
为了提高传统内模控制的鲁棒性和抗干扰能力,采用在线支持向量机回归(Online Support Vector Machine Regression,OSVMR )理论建立系统的正向模型和设计逆模控制器。首先简要介绍了OSVMR的原理和算法,然后将其应用于内模控制问题,并建立了OSVMR模型。其次,在控制过程可逆的条件下设计了OSVMR控制器,最后将该控制方法应用于可逆非线性系统和具未知干扰的温室环境控制问题,仿真结果表明该方法与RBF神经网络IMC相比,具有较简单的模型和较好的控制性能。  相似文献   

6.
针对一类具有输出反馈耦合的离散非线性系统,将过程的非线性状态空间模型等效为线性时变状态空间模型;然后利用最小二乘法辨识系统参数,并通过在目标函数中引入系统状态的变化给出一种具有类似离散PI最优调节器结构的新型自适应预测函数控制器.由于引入了新的优化目标函数,该控制器控制效果与鲁棒性要优于仅考虑预测输出误差的传统预测函数控制器.仿真结果表明,该控制器优于经典离散PI最优调节器.  相似文献   

7.
提出一类非线性系统基于最小二乘支持向量机的直接自适应控制方法.该方法采用最小二乘支持向量机构造自适应控制器,自适应控制器参数的在线调整规律由Lyapunov稳定性理论导出,并严格证明了闭环系统的渐近稳定性.仿真研究表明了此控制方案的可行性和有效性.  相似文献   

8.
基于支持向量机的非线性系统辨识   总被引:10,自引:0,他引:10  
刘江华  陈佳品  程君实 《测控技术》2002,21(11):54-56,58
支持向量机(SVM)是一种新的通用学习机器,它从结构风险最小化的角度,分析了学习过程的一致性,收敛速度等。SVM能以任意精度逼近一类函数,而与输入的维数无关,克服了传统神经网络用于系统辨识的维数灾问题及结构难以确定等,在于这一辨识的维数灾问题及结构难以确定等特点,基于这一特性研究了对非线性动态系统的辨识问题,仿真结果表明SVM用于系统辨识有良好的辨识效果,并指出了今后研究的方向。  相似文献   

9.
基于并行支持向量机的多变量非线性模型预测控制   总被引:2,自引:0,他引:2  
提出一种基于并行支持向量机的多变量系统非线性模型预测控制算法.首先,通过考虑输入、输出间的耦合,建立基于并行支持向量机的多步预测模型;然后,将该模型用于非线性预测控制,提出新的适用于并行预测模型的反馈校正策略,得到最优控制律.连续搅拌槽式反应器(CSTR)的控制仿真结果表明,该算法的性能优于基于并行神经网络的非线性模型预测控制和基于集成模型的非线性模型预测控制.  相似文献   

10.
对于非线性系统预测控制问题, 本文提出了一种基于模型学习和粒子群优化(PSO)的单步预测控制算法.该方法使用最小二乘支持向量机(LS-SVM)建立非线性系统模型并预测系统的输出值, 通过输出反馈和偏差校正减少预测误差, 由PSO滚动优化获得非线性系统的控制量. 该方法能在非线性系统数学模型未知的情况下设计出有效的预测控制器. 通过对单变量多变量非线性系统进行仿真, 证明了该预测控制方法是有效的, 且具有良好的自适应能力和鲁棒性.  相似文献   

11.
针对木材干燥系统强耦合非线性的特性,提出了一种基于小波最小二乘支持向量机的预测控制方法.讨论了利用小波支持向量机对木材干燥系统进行系统识别的方法,并将辨识模型应用于预测控制算法,实现了木材干燥的自适应控制.仿真结果表明,基于小波支持向量机的预测控制技术具有较好的鲁棒性,对木材干燥系统有很好的实用性.  相似文献   

12.
    
A new support vector machine based nonlinear predictive functional control design method has been developed and applied to an industrial coking furnace, which leads to the improvement of regulatory capacity for both reference input tracking and load disturbance rejection compared with traditional PFC and PID control strategies. The nonlinear process is first treated into a linear part plus a nonlinear part, then a convergent overall linear predictive functional control law is designed. The method gives a direct and effective multi-step predicting method and uses linear methods to get the control law which avoids the complicated nonlinear optimization. Comparison results and application to the temperature control of the industrial heavy oil coking furnace are presented in the article showing the efficiency of the method.  相似文献   

13.
A neurofuzzy scheme has been designed to carry out on-line identification, with the aim of being used in an adaptive–predictive dynamic matrix control (DMC) of unconstrained nonlinear systems represented by a transfer function with varying parameters. This scheme supplies to the DMC controller the linear model and the nonlinear output predictions at each sample instant, and is composed of two blocks. The first one makes use of a fuzzy partition of the external variable universe of discourse, which smoothly commutes between several linear models. In the second block, a recurrent linear neuron with interpretable weights performs the identification of the models by means of supervised learning. The resulting identifier has several main advantages: interpretability, learning speed, and robustness against catastrophic forgetting. The proposed controller has been tested both on simulation and on a real laboratory plant, showing a good performance.  相似文献   

14.
激光焊接过程数学模型足一个较强非线性的数学模型,通常的线性辨识方法无法得到它精确的数学模型.支持向量机作为一种新的机器学习方法,具有较强的非线性拟合能力,应用支持向量机非线性系统回归建模方法,辨识出具有典型非线性特性的焊接过程模型,并采用预测控制算法对焊接过程进行控制.实验证明,支持向量机对非线性系统具有很好的拟合效果,基于支持向量机的预测控制具有较好的非线性控制效果.  相似文献   

15.
The input-state linear horizon (ISLH) for a nonlinear discrete-time system is defined as the smallest number of time steps it takes the system input to appear nonlinearly in the state variable. In this paper, we employ the latter concept and show that the class of constraint admissible N-step affine state-feedback policies is equivalent to the associated class of constraint admissible disturbance-feedback policies, provided that N is less than the system’s ISLH. The result generalizes a recent result in [Goulart, P. J., Kerrigan, E. C., Maciejowski, J. M. (2006). Optimization over state feedback policies for robust control with constraints. Automatica, 42(4), 523-533] and is significant because it enables one: (i) to determine a constraint admissible state-feedback policy by employing well-known convex optimization techniques; and (ii) to guarantee robust recursive feasibility of a class of model predictive control (MPC) policies by imposing a suitable terminal constraint. In particular, we propose an input-to-state stabilizing MPC policy for a class of nonlinear systems with bounded disturbance inputs and mixed polytopic constraints on the state and the control input. At each time step, the proposed MPC policy requires the solution of a single convex quadratic programme parameterized by the current system state.  相似文献   

16.
如何对在有损网络环境中传输的视频进行错误隐匿是视频传输研究中的基本问题。支持向量机(SVM)是一种新兴的通用学习算法,是国际上机器学习领域新的热点。为了取得比现有方法更好的错误隐匿效果,提出了一种新的基于支持向量机回归估计的错误隐匿策略,首先建立了基于支持向量机回归估计的图像插值算法,并将其引入到错误隐匿问题中,然后用空域插值的方法达到错误隐匿的目的。实验结果表明,与目前采用的各种错误隐匿策略相比较,基于支持向量机的错误隐匿策略在错误隐匿效果和推广性能上都具有一定的优越性。  相似文献   

17.
In this paper, receding horizon model predictive control (RHMPC) of nonlinear systems subject to input and state constraints is considered. We propose to estimate the terminal region and the terminal cost off-line using support vector machine learning. The proposed approach exploits the freedom in the choices of the terminal region and terminal cost needed for asymptotic stability. The resulting terminal regions are large and, hence provide for large domains of attraction of the RHMPC. The promise of the method is demonstrated with two examples.  相似文献   

18.
  总被引:3,自引:0,他引:3  
Dual composition control of a high-purity distillation column is recognized as an industrially important, yet notoriously difficult control problem. It is proposed, however, that Wiener models, consisting of a linear dynamic element followed in series by a static nonlinear element, are ideal for representing this and several other nonlinear processes. They are relatively simple models requiring little more effort in development than a standard linear step response model, yet offer superior characterization of systems with highly nonlinear gains. Wiener models may be incorporated into MPC schemes in a unique way that effectively removes the nonlinearity from the control problem, preserving many of the favorable properties of linear MPC, especially in the analysis of stability. In this paper, Wiener model predictive control is applied to an industrial C2-splitter at the Orica Olefines plant with promising results.  相似文献   

19.
A robust MPC for constrained nonlinear systems with uncertainties is presented. Outer bounds of the reachable sets of the system are used to predict the evolution of the system under uncertainty. A method that uses zonotopes to represent the approximated reachable sets is proposed. The closed-loop system is ultimately bounded thanks to a contractive constraint that drives the system to a robust invariant set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号