首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
陈可嘉  王潇 《控制与决策》2013,28(10):1502-1506
针对两机无等待流水车间调度问题,提出目标函数最大完工时间最小化的快速算法,并给出算法的复杂度。分析两机无等待流水车间调度问题的排列排序性质,证明了两机无等待流水车间调度问题的可行解只存在于排列排序中,排列排序的最优解一定是两机无等待流水车间调度问题的最优解。最后研究了同时包含普通工件和无等待工件的两机流水车间调度问题的复杂性,为进一步研究两机无等待流水车间调度问题提供了理论依据。  相似文献   

2.
In this paper, we study the problem of minimizing the weighted sum of makespan and total completion time in a permutation flowshop where the processing times are supposed to vary according to learning effects. The processing time of a job is a function of the sum of the logarithms of the processing times of the jobs already processed and its position in the sequence. We present heuristic algorithms, which are modified from the optimal schedules for the corresponding single machine scheduling problem and analyze their worst-case error bound. We also adopt an existing algorithm as well as a branch-and-bound algorithm for the general m-machine permutation flowshop problem. For evaluation of the performance of the algorithms, computational experiments are performed on randomly generated test problems.  相似文献   

3.
The general flowshop scheduling problem is a production problem where a set of n jobs have to be processed with identical flow pattern on m machines. In permutation flowshops the sequence of jobs is the same on all machines. A significant research effort has been devoted for sequencing jobs in a flowshop minimizing the makespan. This paper describes the application of a Constructive Genetic Algorithm (CGA) to makespan minimization on flowshop scheduling. The CGA was proposed recently as an alternative to traditional GA approaches, particularly, for evaluating schemata directly. The population initially formed only by schemata, evolves controlled by recombination to a population of well-adapted structures (schemata instantiation). The CGA implemented is based on the NEH classic heuristic and a local search heuristic used to define the fitness functions. The parameters of the CGA are calibrated using a Design of Experiments (DOE) approach. The computational results are compared against some other successful algorithms from the literature on Taillard’s well-known standard benchmark. The computational experience shows that this innovative CGA approach provides competitive results for flowshop scheduling problems.  相似文献   

4.
This paper considers the problem of scheduling part families and jobs within each part family in a flowshop manufacturing cell with sequence dependent family setups times where it is desired to minimize the makespan while processing parts (jobs) in each family together. Two evolutionary algorithms—a Genetic Algorithm and a Memetic Algorithm with local search—are proposed and empirically evaluated as to their effectiveness in finding optimal permutation schedules. The proposed algorithms use a compact representation for the solution and a hierarchically structured population where the number of possible neighborhoods is limited by dividing the population into clusters. In comparison to a Multi-Start procedure, solutions obtained by the proposed evolutionary algorithms were very close to the lower bounds for all problem instances. Moreover, the comparison against the previous best algorithm, a heuristic named CMD, indicated a considerable performance improvement.  相似文献   

5.
In this paper, we address the problem of scheduling a set of jobs in a flowshop with makespan objective. In contrast to the usual assumption of machine availability presented in most research, we consider that machines may not be available at the beginning of the planning period, due to processing of previously scheduled jobs. We first formulate the problem, analyse the structure of solutions depending on a number of factors (such as machines, jobs, structure of the processing times, availability vectors, etc.), and compare it with its classical counterpart. Results indicate that the problem under consideration presents a different structure of solutions, and that it is easier than the classical permutation flowshop problem. In view of these results, we propose and test a number of fast heuristics for the problem.  相似文献   

6.
This paper studies a new generalization of the regular permutation flowshop scheduling problem (PFSP) referred to as the distributed permutation flowshop scheduling problem or DPFSP. Under this generalization, we assume that there are a total of F identical factories or shops, each one with m machines disposed in series. A set of n available jobs have to be distributed among the F factories and then a processing sequence has to be derived for the jobs assigned to each factory. The optimization criterion is the minimization of the maximum completion time or makespan among the factories. This production setting is necessary in today's decentralized and globalized economy where several production centers might be available for a firm. We characterize the DPFSP and propose six different alternative mixed integer linear programming (MILP) models that are carefully and statistically analyzed for performance. We also propose two simple factory assignment rules together with 14 heuristics based on dispatching rules, effective constructive heuristics and variable neighborhood descent methods. A comprehensive computational and statistical analysis is conducted in order to analyze the performance of the proposed methods.  相似文献   

7.
This work starts from modeling the scheduling of n jobs on m machines/stages as flowshop with buffers in manufacturing. A mixed-integer linear programing model is presented, showing that buffers of size n ? 2 allow permuting sequences of jobs between stages. This model is addressed in the literature as non-permutation flowshop scheduling (NPFS) and is described in this article by a disjunctive graph (digraph) with the purpose of designing specialized heuristic and metaheuristics algorithms for the NPFS problem. Ant colony optimization (ACO) with the biologically inspired mechanisms of learned desirability and pheromone rule is shown to produce natively eligible schedules, as opposed to most metaheuristics approaches, which improve permutation solutions found by other heuristics. The proposed ACO has been critically compared and assessed by computation experiments over existing native approaches. Most makespan upper bounds of the established benchmark problems from Taillard (1993) and Demirkol, Mehta, and Uzsoy (1998) with up to 500 jobs on 20 machines have been improved by the proposed ACO.  相似文献   

8.
This paper studies the two-machine permutation flowshop scheduling problem with anticipatory setup times and an availability constraint imposed only on the first machine. The objective is to minimize the makespan. Under the assumption that interrupted jobs can resume their operations, we present a polynomial-time approximation scheme for this problem.  相似文献   

9.
Very recently, Pan et al. [Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO07, pp. 126–33] presented a new and novel discrete differential evolution algorithm for the permutation flowshop scheduling problem with the makespan criterion. On the other hand, the iterated greedy algorithm is proposed by [Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033–49] for the permutation flowshop scheduling problem with the makespan criterion. However, both algorithms are not applied to the permutation flowshop scheduling problem with the total flowtime criterion. Based on their excellent performance with the makespan criterion, we extend both algorithms in this paper to the total flowtime objective. Furthermore, we propose a new and novel referenced local search procedure hybridized with both algorithms to further improve the solution quality. The referenced local search exploits the space based on reference positions taken from a reference solution in the hope of finding better positions for jobs when performing insertion operation. Computational results show that both algorithms with the referenced local search are either better or highly competitive to all the existing approaches in the literature for both objectives of makespan and total flowtime. Especially for the total flowtime criterion, their performance is superior to the particle swarm optimization algorithms proposed by [Tasgetiren, M. F., Liang, Y. -C., Sevkli, M., Gencyilmaz, G. (2007). Particle swarm optimization algorithm for makespan and total flowtime minimization in permutation flowshop sequencing problem. European Journal of Operational Research, 177(3), 1930–47] and [Jarboui, B., Ibrahim, S., Siarry, P., Rebai, A. (2007). A combinatorial particle swarm optimisation for solving permutation flowshop problems. Computers & Industrial Engineering, doi:10.1016/j.cie.2007.09.006]. Ultimately, for Taillard’s benchmark suite, four best known solutions for the makespan criterion as well as 40 out of the 90 best known solutions for the total flowtime criterion are further improved by either one of the algorithms presented in this paper.  相似文献   

10.
In this paper we consider the general, no-wait and no-idle permutation flowshop scheduling problem with deteriorating jobs, i.e., jobs whose processing times are increasing functions of their starting times. We assume a linear deterioration function with identical increasing rates for all the jobs and there are some dominating relationships between the machines. We show that the problems to minimize the makespan and the total completion time remain polynomially solvable when deterioration is considered, although these problems are more complicated than their classical counterparts without deterioration.  相似文献   

11.
The paper addresses the problem of flowshop scheduling in order to minimize the makespan objective. Three probabilistic hybrid heuristics are presented for solving permutation flowshop scheduling problem. The proposed methodology combines elements from both constructive heuristic search and a stochastic improvement technique. The stochastic method used in this paper is simulated annealing (SA). Experiments have been run on a large number of randomly generated test problems of varying jobs and machine sizes. Our approach is shown to outperform best-known existing heuristics, including the classical NEH technique (OMEGA, 1983) and the SA based on (OMEGA, 1989) of Osman and Potts . Statistical tests of significance are performed to substantiate the claims of improvement.  相似文献   

12.
We address the two–machine flowshop scheduling problem to minimize makespan where jobs have random and bounded processing times. The probability distributions of job processing times are unknown and only the lower and upper bounds of processing times are given before scheduling. In such cases there may not exist a unique schedule that remains optimal for all possible realizations of processing times, and therefore, a set of schedules has to be considered which dominates all other schedules. In this paper, we find some sufficient conditions for the considered problem.  相似文献   

13.
NEH is an effective heuristic for solving the permutation flowshop problem with the objective of makespan. It includes two phases: generate an initial sequence and then construct a solution. The initial sequence is studied and a strategy is proposed to solve job insertion ties which may arise in the construct process. The initial sequence which is generated by combining the average processing time of jobs and their standard deviations shows better performance. The proposed strategy is based on the idea of balancing the utilization among all machines. Experiments show that using this strategy can improve the performance of NEH significantly. Based on the above ideas, a heuristic NEH-D (NEH based on Deviation) is proposed, whose time complexity is O(mn2), the same as that of NEH. Computational results on benchmarks show that the NEH-D is significantly better than the original NEH.  相似文献   

14.
We consider the three-stage assembly flowshop scheduling problem with the objective of minimizing the makespan. The three-stage assembly problem generalizes both the serial three machine flowshop problem and the two-stage assembly flowshop scheduling problem and is therefore strongly NP-hard. We analyze the worst-case ratio bound for several heuristics for this problem. We also analyze the worst-case absolute bound for a heuristic based on compact vector summation techniques and we point out that, for a large number of jobs, this heuristic becomes asymptotically optimal.Scope and purposeThe three-stage assembly flowshop scheduling problem models situations which arise frequently in manufacturing when various fabrication operations are performed concurrently and then collected and transported into an assembly area for a final assembly operation. The main criterion for this problem is the minimization of the maximum job completion time (makespan). The objective of this paper is to derive algorithms for minimizing the makespan. In doing so, we also demonstrate the reduction of assembly flowshop problems to their embedded serial flowshop problems.  相似文献   

15.
Some scheduling problems with deteriorating jobs and learning effects   总被引:4,自引:0,他引:4  
Although scheduling with deteriorating jobs and learning effect has been widely investigated, scheduling research has seldom considered the two phenomena simultaneously. However, job deterioration and learning co-exist in many realistic scheduling situations. In this paper, we introduce a new scheduling model in which both job deterioration and learning exist simultaneously. The actual processing time of a job depends not only on the processing times of the jobs already processed but also on its scheduled position. For the single-machine case, we derive polynomial-time optimal solutions for the problems to minimize makespan and total completion time. In addition, we show that the problems to minimize total weighted completion time and maximum lateness are polynomially solvable under certain agreeable conditions. For the case of an m-machine permutation flowshop, we present polynomial-time optimal solutions for some special cases of the problems to minimize makespan and total completion time.  相似文献   

16.
In this study, a bi-objective multi-start simulated-annealing algorithm (BMSA) is presented for permutation flowshop scheduling problems with the objectives of minimizing the makespan and total flowtime of jobs. To evaluate the performance of the BMSA, computational experiments were conducted on the well-known benchmark problem set provided by Taillard. The non-dominated sets obtained from each of the existing benchmark algorithms and the BMSA were compared, and then combined to form a net non-dominated front. The computational results show that more than 64% of the solutions in the net non-dominated front are contributed by the proposed BMSA. It is believed that these solutions can serve as new benchmarks for future research.  相似文献   

17.
This paper addresses the parallel flowshop scheduling problem with stochastic processing times, where a product composed of several components has to be finished at a particular moment. These components are processed in independent parallel factories, and each factory can be modeled as a permutation flowshop. The processing time of each operation at each factory is a random variable following a given probability distribution. The aim is to find the robust starting time of the operations at each factory in a way that all the components of the product are completed on a given deadline with a user-defined probability. A simheuristic algorithm is proposed in order to minimize each of the following key performance indicators: (i) the makespan in the deterministic version; and (ii) the expected makespan or a makespan percentile in the stochastic version. A set of computational experiments are carried out to illustrate the performance of the proposed methodology by comparing the outputs under different levels of stochasticity.  相似文献   

18.
Due to its simplicity yet powerful search ability, iterated local search (ILS) has been widely used to tackle a variety of single-objective combinatorial optimization problems. However, applying ILS to solve multi-objective combinatorial optimization problems is scanty. In this paper we design a multi-objective ILS (MOILS) to solve the multi-objective permutation flowshop scheduling problem with sequence-dependent setup times to minimize the makespan and total weighted tardiness of all jobs. In the MOILS, we design a Pareto-based variable depth search in the multi-objective local search phase. The search depth is dynamically adjusted during the search process of the MOILS to strike a balance between exploration and exploitation. We incorporate an external archive into the MOILS to store the non-dominated solutions and provide initial search points for the MOILS to escape from local optima traps. We compare the MOILS with several multi-objective evolutionary algorithms (MOEAs) shown to be effective for treating the multi-objective permutation flowshop scheduling problem in the literature. The computational results show that the proposed MOILS outperforms the MOEAs.  相似文献   

19.
This paper considers a permutation flowshop problem with secondary resources with the objective of minimizing the number of tardy jobs. The number of secondary resources assigned to the machines (workcenters), as well as the allocation of resources among the various machines, will play a significant role in the time required to process each job by its specified due date. This problem finds application in a large number of environments including manufacturing, maintenance, warehousing operations, as well as in healthcare. The research presents a lower bound for the permutation flowshop problem and evaluates its performance against the optimal solution for small, medium, and large instances. Several heuristics, including neighborhood search and simulated annealing, are presented to generate the secondary resource assignment and the allocation of jobs to the schedule. The computational complexity of the lower bound and computational examples for the heuristics are discussed.  相似文献   

20.
For over 20 years the NEH heuristic of Nawaz, Enscore, and Ham [A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, The International Journal of Management Science 1983;11:91–5] has been commonly regarded as the best heuristic for solving the NP-hard problem of minimizing the makespan in permutation flow shops. The strength of NEH lies mainly in its priority order according to which jobs are selected to be scheduled during the insertion phase. Framinan et al. [Different initial sequences for the heuristic of Nawaz, Enscore and Ham to minimize makespan, idle time or flowtime in the static permutation flowshop problem. International Journal of Production Research 2003;41:121–48] presented the results of an extensive study to conclude that the NEH priority order is superior to 136 different orders examined. Based upon the concept of Johnson's algorithm, we propose a new priority order combined with a simple tie-breaking method that leads to a heuristic that outperforms NEH for all problem sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号