首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 100 毫秒
1.
基于3种群Lotka-Volterra模型构造出了可全局收敛的种群动力学优化算法。在该算法中,每个种群对应着优化问题的一个试探解;基于3种群间的每种相互作用关系,提出了相应的图形表示方法以及对应的Lotka-Volterra模型构建方法,种群间的相互作用关系包括竞争关系、互惠共存关系、捕食-被食关系或者它们间的任意组合;3种群间的每种相互作用关系均对应着一种种群进化算子,该算子的数学表达式就是其对应的Lotka-Volterra模型的离散化表达式;另外,为了求解更复杂的优化问题求解,将种群融合、突变和选择等行为也构造成操作算子。所有算子的特性可以确保整个种群的适应度指数要么保持原状不变,要么向好的方向转移,从而确保了算法的全局收敛性;在种群演变过程中,种群从一种状态转移到另一种状态实现了种群对优化问题最优解的搜索。应用可归约随机矩阵的稳定性条件证明了本算法具有全局收敛性。测试结果表明本算法是高效的。  相似文献   

2.
刘文 《计算机科学》2013,40(12):292-294
针对蚁群算法在求解连续域优化问题时存在复杂度较大、迭代次数较长等问题,提出了一种用于连续域寻优的改进蚁群算法。改进的蚁群算法通过对解空间定向式挖掘来实现全局快速搜索。给出了新算法仿真实验步骤,并将改进后的蚁群算法与其他连续域蚁群算法以及其他智能优化方法进行仿真对比实验。详细的测试结果表明,改进后算法具有优良的全局优化性能,收敛速度也有很好的提升。  相似文献   

3.
赵志刚  张振文  石辉磊 《计算机科学》2013,40(12):68-69,103
针对标准粒子群优化算法搜索精度不高、易陷入局部最优的问题,提出了一种带扰动因子的自适应粒子群优化算法。该算法进行混沌初始化,采用自适应的惯性权重,并将扰动因子加入粒子个体极值、全局极值和位置更新公式中。通过与其它算法的数值实验对比,新算法能够有效避免局部最优,全局收敛性能显著提高,收敛速度更快。  相似文献   

4.
针对差分进化算法处理复杂优化问题时存在后期收敛速度变慢、收敛精度不高和参数设置困难的问题,提出了一种基于动态自适应策略的改进差分进化算法(dn-DADE)。首先,新的变异策略DE/current-to-dnbest/1利用当前种群中的精英解引导有效的搜索方向来动态调整可选的精英解,使其在进化后期趋于全局最优解。其次,分别设计了缩放因子和交叉因子的自适应更新策略,使两者在搜索的不同阶段自适应变化,以弥补差分进化算法对参数敏感的不足,进一步提高算法的稳定性和鲁棒性。对14个benchmark函数进行了测试并与多种先进DE改进算法进行了比较,结果显示,dn-DADE算法具有较高的求解精度,收敛速度快,寻优性能显著。  相似文献   

5.
最大匹配问题的粘贴DNA算法   总被引:1,自引:1,他引:0  
吴雪  宋晨阳  张楠  朱煜  陈志华 《计算机科学》2013,40(12):127-132,140
最大匹配问题(MMP)是图论中经典的组合优化问题。针对此问题提出了基于DNA粘贴计算模型的求解算法,阐述了该算法如何利用DNA链构建最大匹配问题的初始编码,说明了应用粘贴计算模型寻求最终解的生物操作过程,同时分析了此DNA并行算法的计算复杂度,最后给出了该算法的计算机模拟仿真结果和应用实例,得到了所给问题的最大匹配解,并对算法的可行性进行了验证和总结。  相似文献   

6.
为了求解一些复杂优化问题的全局最优解,基于保护区种群迁移动力学模型,提出了一种新的群智能优化算法,简称PZPMDO算法。在该算法中,假设有很多生物种群生活在某生态系统中,该生态系统被分成两个区域,即非保护区和保护区,对生活在保护区内的生物种群实施各种保护。在非保护区与保护区之间存在种群迁移通道,若某区域内的某生物种群的密度过高,该生物种群就会自发地迁移到低密度区域,从而导致低密度区域内的生物种群受到迁移过来的生物种群的影响;若某生物种群的占比越大,该生物种群的影响也就越大;若某生物种群越强壮,该生物种群就越会将其优势传播给其他生物种群。不同区域内的各生物种群因生存竞争而相互影响,这种影响会体现在种群部分特征间的相互作用上,且该影响是随时间变化的。文中采用ZGI指数描述一个生物种群的强弱程度,利用保护区种群迁移动力学模型、种群迁移和相互影响关系构造算子。PZPMDO算法拥有8个算子,且演化时每次仅处理总变量数的1/1000~1/100,具有搜索速度快和全局收敛性的特点,适用于求解维数较高的全局优化问题。  相似文献   

7.
为了解决嵌入式系统设备总线的功耗问题,从软件方面的功耗优化入手,提出一种面向嵌入式系统总线的低功耗优化方法,即在编译阶段,分别对指令地址总线和数据总线进行优化,以减少总线的翻转次数,降低其功耗。具体方法为:针对指令地址总线,采用改进后的遗传算法进行函数段调用优化,然后结合T0编码,减少总线翻转次数,从而降低其功耗。针对指令数据总线,采用粒子群算法进行指令调度优化,然后结合0-1翻转编码,减少总线翻转次数,从而降低其功耗。为了验证上述方法的正确性和有效性,以HR6P系列微处理器为平台展开实验,实验结果表明,总线功耗的优化效率达到25%左右。该方法明显减少了总线的翻转次数,提高了系统的整体性能。  相似文献   

8.
陈信  周永权 《计算机科学》2013,40(11):248-254
针对猴群算法求解全局优化问题精度不高和花费大量的计算时间等问题,结合传统的单纯法的搜索思想,设计出一种基于猴群算法和单纯法的混合算法。该混合算法较大程度上提高了猴群算法求解精度,且加快了猴群算法的收敛速度。通过18个标准测试函数进行了测试,结果表明, 与PSO、GA与MA比较,文中提出的猴群-单纯形混合算法在函数优化方面有较强的优势,其测试函数最优解更接近理论最优解。  相似文献   

9.
王勇  邹盛荣 《计算机科学》2013,40(11):208-210,227
传统的关联规则算法,只考虑了类内的关联性,忽略了类间的相似性特征、高开销的分类过程、耗时的关联过程。提出了数据内间特征模糊贴近分类的数据库约束挖掘算法,其通过数据模糊集间的贴近度描述数据间的一致度,在传统的神经网络挖掘技术中,引入数据融合技术,对类间数据进行分类处理后,对原始挖掘数据的动态特征进行分析获取新的挖掘模型,以在大规模数据库中准确查询目标数据。仿真实验结果表明,算法挖掘稀疏数据集和密集数据集的效率都优于传统的关联规则算法,极大提高了数据库的挖掘效率。  相似文献   

10.
一种基于压缩矩阵的Apriori算法改进研究   总被引:1,自引:0,他引:1  
罗丹  李陶深 《计算机科学》2013,40(12):75-80
针对已有基于矩阵的Apriori算法存在的问题,提出了一种改进的基于压缩矩阵的Apriori算法。算法进行了以下方面的改进:增加了两个数组,分别用于记录矩阵行与列中1的个数,使得算法在压缩矩阵时减少了扫描矩阵的次数;在压缩矩阵中,通过增加删除不能连接的项集和非频繁的项集的操作,使得矩阵压缩得更小,提高了空间效率;改变了删除事务列的条件和算法结束的条件,以减少挖掘结果的误差和算法循环的次数。算法性能分析和实验分析证明,改进后的算法能有效地挖掘频繁项集,并且比现有的算法具有更高的计算效率。  相似文献   

11.
Blended biogeography-based optimization for constrained optimization   总被引:1,自引:0,他引:1  
Biogeography-based optimization (BBO) is a new evolutionary optimization method that is based on the science of biogeography. We propose two extensions to BBO. First, we propose a blended migration operator. Benchmark results show that blended BBO outperforms standard BBO. Second, we employ blended BBO to solve constrained optimization problems. Constraints are handled by modifying the BBO immigration and emigration procedures. The approach that we use does not require any additional tuning parameters beyond those that are required for unconstrained problems. The constrained blended BBO algorithm is compared with solutions based on a stud genetic algorithm (SGA) and standard particle swarm optimization 2007 (SPSO 07). The numerical results demonstrate that constrained blended BBO outperforms SGA and performs similarly to SPSO 07 for constrained single-objective optimization problems.  相似文献   

12.
Biogeography-based optimization (BBO) is a new evolutionary algorithm inspired by biogeography, which involves the study of the migration of biological species between habitats. Previous work has shown that various migration models of BBO result in significant changes in performance. Sinusoidal migration models have been shown to provide the best performance so far. Motivated by biogeography theory and previous results, in this paper a generalized sinusoidal migration model curve is proposed. A previously derived BBO Markov model is used to analyze the effect of migration models on optimization performance, and new theoretical results which are confirmed with simulation results are obtained. The results show that the generalized sinusoidal migration model is significantly better than other models for simple but representative problems, including a unimodal one-max problem, a multimodal problem, and a deceptive problem. In addition, performance comparison is further investigated through 23 benchmark functions with a wide range of dimensions and diverse complexities, to verify the superiority of the generalized sinusoidal migration model.  相似文献   

13.
Haiping Ma 《Information Sciences》2010,180(18):3444-3464
Motivated by the migration mechanisms of ecosystems, various extensions to biogeography-based optimization (BBO) are proposed here. As a global optimization method, BBO is an original algorithm based on the mathematical model of organism distribution in biological systems. BBO is an evolutionary process that achieves information sharing by biogeography-based migration operators. In BBO, habitats represent candidate problem solutions, and species migration represents the sharing of features between candidate solutions according to the fitness of the habitats. This paper generalizes equilibrium species count results in biogeography theory, explores the behavior of six different migration models in BBO, and investigates performance through 23 benchmark functions with a wide range of dimensions and diverse complexities. The performance study shows that sinusoidal migration curves provide the best performance among the six different models that we explored. In addition, comparison with other biology-based optimization algorithms is investigated, and the influence of the population size, problem dimension, mutation rate, and maximum migration rate of BBO are also studied.  相似文献   

14.
为了解决某些函数优化问题,基于具有脉冲毒素输入的生态毒理动力学模型提出了可全局收敛的函数优化算法。在该算法中,令环境系统与优化问题的搜索空间相对应,该环境系统存在污染现象,污染源定期地向环境系统注入有毒污染物。有多种不同类型的种群生活在该环境系统中,不同类型的种群之间存在竞争关系和捕食-被捕食关系,每个种群对应着优化问题的一个试探解。将生态毒理动力学模型映射成对种群的特征的变化规律的描述,利用环境和种群以及种群与种群之间的相互作用构造种群的进化算子,这些算子从多种角度实现了种群与环境以及种群与种群之间的信息交换。结果表明:因环境污染影响的是种群的很少部分特征,当种群演化时,只涉及到很少一部分特征参与运算,故收敛速度可得到提升;环境系统脉冲式注入毒素,可以导致种群的特征状态值发生突然改变,这种特点有利于使搜索跳出局部最优解陷阱;使能够抵抗污染的强壮种群获得生长,而无法抵抗污染的虚弱种群则停止生长,此特点确保了该算法具有全局收敛性。测试结果表明:对某些函数优化问题的求解,本算法与已有的群智能优化算法相比,均具有较高的精度和性能。  相似文献   

15.
Exploring dynamic self-adaptive populations in differential evolution   总被引:1,自引:7,他引:1  
Although the Differential Evolution (DE) algorithm has been shown to be a simple yet powerful evolutionary algorithm for optimizing continuous functions, users are still faced with the problem of preliminary testing and hand-tuning of the evolutionary parameters prior to commencing the actual optimization process. As a solution, self-adaptation has been found to be highly beneficial in automatically and dynamically adjusting evolutionary parameters such as crossover rates and mutation rates. In this paper, we present a first attempt at self-adapting the population size parameter in addition to self-adapting crossover and mutation rates. Firstly, our main objective is to demonstrate the feasibility of self-adapting the population size parameter in DE. Using De Jong's F1–F5 benchmark test problems, we showed that DE with self-adaptive populations produced highly competitive results compared to a conventional DE algorithm with static populations. In addition to reducing the number of parameters used in DE, the proposed algorithm actually outperformed the conventional DE algorithm for one of the test problems. It was also found that that an absolute encoding methodology for self-adapting population size in DE produced results with greater optimization reliability compared to a relative encoding methodology.  相似文献   

16.
Biogeography-based optimization (BBO) is a bio-inspired metaheuristic based on the mathematics of island biogeography. The paper proposes a new variation of BBO, named ecogeography-based optimization (EBO), which regards the population of islands (solutions) as an ecological system with a local topology. Two novel migration operators are designed to perform effective exploration and exploitation in the solution space, mimicking the species dispersal under ecogeographic barriers and differentiations. Experimental results show that the EBO outperforms the basic BBO and several other popular evolutionary algorithms (EAs) on a set of well-known benchmark problems. We also present a real-world application of the proposed EBO to an emergency airlift problem in the 2013 Ya׳an–Lushan Earthquake, China.  相似文献   

17.
Biogeography-based optimization (BBO) is a new evolutionary algorithm. The major problem of basic BBO is that its migration operator is rotationally variant, which leaves BBO performing poorly in non-separable problems. To overcome this drawback of BBO, in this paper, we propose the covariance matrix based migration (CMM) to relieve BBO’s dependence upon the coordinate system so that BBO’s rotational invariance is enhanced. By embedding the CMM into BBO, we put forward a new BBO approach, namely biogeography-based optimization with covariance matrix based migration, called CMM-BBO. Specifically, CMM-BBO algorithms are developed by the CMM operator being randomly combined with the original migration in various existing BBO variants. Numeric simulations on 37 benchmark functions show that our CMM-BBO approach effectively improves the performance of the existing BBO algorithms.  相似文献   

18.
运用动态演化算法来求解约束优化问题,能够得到好的解。但由于采用常规的两个粒子参与交叉的交叉算子,使整个算法耗费的时间过多,导致算法的效率不高。文章用多个粒子参与的交叉算子,并以偏序逻辑对群体排序,使得该算法的收敛速度提高。最后通过数值实验表明这种方法的有效性。  相似文献   

19.
Evolutionary algorithms (EAs) are fast and robust computation methods for global optimization, and have been widely used in many real-world applications. We first conceptually discuss the equivalences of various popular EAs including genetic algorithm (GA), biogeography-based optimization (BBO), differential evolution (DE), evolution strategy (ES) and particle swarm optimization (PSO). We find that the basic versions of BBO, DE, ES and PSO are equal to the GA with global uniform recombination (GA/GUR) under certain conditions. Then we discuss their differences based on biological motivations and implementation details, and point out that their distinctions enhance the diversity of EA research and applications. To further study the characteristics of various EAs, we compare the basic versions and advanced versions of GA, BBO, DE, ES and PSO to explore their optimization ability on a set of real-world continuous optimization problems. Empirical results show that among the basic versions of the algorithms, BBO performs best on the benchmarks that we studied. Among the advanced versions of the algorithms, DE and ES perform best on the benchmarks that we studied. However, our main conclusion is that the conceptual equivalence of the algorithms is supported by the fact that algorithmic modifications result in very different performance levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号