首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 368 毫秒
1.
针对室内人员检测环境毫米波雷达点云数据特性,并考虑多目标点云密集复杂情况,提出一种毫米波雷达点云的密度和划分联合聚类方法。毫米波雷达点云数据具有稀疏、均匀性差的特征。首先采用基于 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)改进的参数自适应算法进行密度聚类,并对其存在的无限制密度扩张问题,通过决策树归类,对异常数据簇进行二次划分,保证了数据簇属性的单一性。试验结果表明,改进的密度聚类算法可自适应地寻找聚类过程中所需要的最佳参数并实现聚类,更适应毫米波雷达点云数据的特性,同时结合划分聚类对异常数据进行二次划分,使得聚类效果更加细腻和准确,实现了多目标密集情况下点云数据精准聚类划分的效果。  相似文献   

2.
基于密度峰值和网格的自动选定聚类中心算法   总被引:1,自引:0,他引:1  
夏庆亚 《计算机科学》2017,44(Z11):403-406
针对快速搜索和发现密度峰值的聚类算法(DPC)中数据点之间计算复杂,最终聚类的中心个数需要通过决策图手动选取等问题,提出基于密度峰值和网格的自动选定聚类中心的改进算法GADPC。首先结合Clique网格聚类算法的思想,不再针对点对象进行操作,而是将点映射到网格,并将网格作为聚类对象,从而减少了DPC算法中对数据点之间的距离计算和聚类次数;其次通过改进后的聚类中心个数判定准则更精确地自动选定聚类中心个数;最后对网格边缘点和噪声点,采用网格内点对象和相邻网格间的相似度进行了处理。实验通过采用UEF(University of Eastern Finland)提供的数据挖掘使用的人工合成数据集和UCI自然数据集进行对比,其聚类评价指标(Rand Index)表明,改进的算法在计算大数据集时聚类质量不低于DPC和K-means算法,而且提高了DPC算法的处理效率。  相似文献   

3.
吴斌  卢红丽  江惠君 《计算机应用》2020,40(6):1654-1661
密度峰值聚类(DPC)算法是一种新型的聚类算法,具有调节参数少、无需迭代求解、能够发现非球形簇等优点;但也存在截断距离无法自动调节、聚类中心需要人工指定等缺点。针对上述问题,提出了一种自适应DPC(ADPC)算法,实现了基于基尼系数的自适应截断距离调节,并建立了一种聚类中心的自动获取策略。首先,综合考虑局部密度和相对距离两种因素以重新定义簇中心权值计算公式;然后,基于基尼系数建立自适应截断距离调节方法;最后,根据决策图和簇中心权值排序图提出自动选取聚类中心的策略。仿真实验结果表明,ADPC算法可以根据问题特征来自动调节截断距离并自动获取聚类中心点,而且在测试数据集上取得了比几种常用的聚类算法和DPC改进算法更好的结果。  相似文献   

4.
针对密度峰值聚类算法(The density peak clustering algorithm,DPC)聚类结果受距离阈值dc参数影响较大的问题,提出一种局部密度捕获范围以及利用局部密度信息熵均值进行加权优化的方法(简称为LDDPC),在DPC算法选取到错误的距离阈值dc时,通过对最大密度邻近点的相对距离进行加权,重新获得正确的分类数量和聚类中心。经典数据集的实验结果表明,基于局部密度信息熵均值加权优化能避免 DPC 算法中距离阈值dc对聚类结果的影响,提高分类的正确率。  相似文献   

5.
基于快速搜索和寻找密度峰值聚类算法(DPC)具有无需迭代且需要较少参数的优点,但其仍然存在一些缺点:需要人为选取截断距离参数;在流形数据集上的处理效果不佳。针对这些问题,提出一种密度峰值聚类改进算法。该算法结合了自然和共享最近邻算法,重新定义了截断距离和局部密度的计算方法,并且算法融合了候选聚类中心计算概念,通过算法选出不同的候选聚类中心,然后以这些候选中心为新的数据集,再次开始密度峰值聚类,最后将剩余的点分配到所对应的候选中心点所在类簇中。改进的算法在合成数据集和UCI数据集上进行验证,并与K-means、DBSCAN和DPC算法进行比较。实验结果表明,提出的算法在性能方面有明显提升。  相似文献   

6.
密度峰值聚类(DPC)是一种基于局部密度的聚类方法,在DPC中影响算法的效果的两个基本因素是局部密度定义和类中心选择。针对经典DPC在定义局部密度时没有考虑到邻域内样本点的分布情况,以及无法自动选择类中心等问题,提出一种基于分布的局部密度定义和基于最大类间差法的自动类中心选择策略。计算每个样本点截断距离圆圈内的数据点个数,同时考虑数据点的分布情况。当圈内具有相同的点个数时,如果圆圈内的数据点分布越均匀,该点的局部密度就越大,密度峰值的可能性越高。通过最大类间差法(Otsu)自动选择阈值找出类中心。实验结果表明,新算法不仅能够自动选择聚类中心,而且相比已有原算法能获得更高分类准确度。  相似文献   

7.
在K-means型多视图聚类算法中,最终的聚类结果会受到初始类中心的影响。因此研究了不同的初始中心选择方法对K-means型多视图聚类算法的影响,并提出一种基于采样的主动式初始中心选择方法(sampledclustering by fast search and find of density peaks,SDPC)。该方法通过对数据集进行均匀采样,利用密度峰值快速搜索聚类算法(clustering by fast search and find of density peaks,DPC),以及K-means再迭代策略,进一步改善多视图聚类中的初始中心选择效率和类个数问题。实验验证了不同初始化方法对K-means型多视图聚类算法的影响。多视图基准数据集上的实验结果表明:全局(核)K-means初始化方法存在时间复杂度过高的问题,AFKMC~2(assumption-free K-Markov chain Monte Carlo)初始化适用于大规模数据,DPC可以主动选择类个数和初始类中心,SDPC较DPC而言,不仅能主动式获得类个数,还在聚类精度和效率上取得了较好的折衷。  相似文献   

8.
针对三维扫描仪获取的含噪点云数据会严重影响到后期三维重建的精度,提出一种新的散乱点云快速去噪算法。该算法首先通过改进的K-means聚类算法来建立点云的空间拓扑关系,然后对聚类后每一类的点云进行噪声点识别及去除。实验结果表明算法简单快速,在散乱点云实现有效聚类的基础上不但去噪效果良好,而且能够快速去除点云中的明显离群噪声点,保留理想目标点云。  相似文献   

9.
孙林  秦小营  徐久成  薛占熬 《软件学报》2022,33(4):1390-1411
密度峰值聚类(density peak clustering, DPC)是一种简单有效的聚类分析方法.但在实际应用中,对于簇间密度差别大或者簇中存在多密度峰的数据集,DPC很难选择正确的簇中心;同时,DPC中点的分配方法存在多米诺骨牌效应.针对这些问题,提出一种基于K近邻(K-nearest neighbors,KNN)和优化分配策略的密度峰值聚类算法.首先,基于KNN、点的局部密度和边界点确定候选簇中心;定义路径距离以反映候选簇中心之间的相似度,基于路径距离提出密度因子和距离因子来量化候选簇中心作为簇中心的可能性,确定簇中心.然后,为了提升点的分配的准确性,依据共享近邻、高密度最近邻、密度差值和KNN之间距离构建相似度,并给出邻域、相似集和相似域等概念,以协助点的分配;根据相似域和边界点确定初始聚类结果,并基于簇中心获得中间聚类结果.最后,依据中间聚类结果和相似集,从簇中心到簇边界将簇划分为多层,分别设计点的分配策略;对于具体层次中的点,基于相似域和积极域提出积极值以确定点的分配顺序,将点分配给其积极域中占主导地位的簇,获得最终聚类结果.在11个合成数据集和27个真实数据集上进行仿真...  相似文献   

10.
快速搜索和找到密度峰DPC(clustering by fast search and find of density peaks)的聚类是一种新颖的算法,它通过找到密度峰来有效地发现聚类的中心。DPC算法的精度取决于对给定数据集的密度的精确估计以及对截止距离dc(cutoff distance)的选择。dc主要是用于计算每个数据点的密度和识别集群中的边界点,而DPC算法中dc的估计值却主要取决于主观经验值。提出一种基于核密度估计的DPC方法(KDE-DPC)来确定最合适的dc值。该方法通过引用一种新的Solve-the-Equation方法进行窗宽优化,根据不同数据集的概率分布,计算出最适合的dc。标准聚类基准数据集的实验结果证实了所提出的方法优越于DPC算法以及经典的K-means算法、DBSCAN算法和AP算法。  相似文献   

11.
针对密度峰值聚类(Density Peak Clustering, DPC)算法具有时空复杂度高而降低了对大规模数据集聚类的有效性,以及依靠决策图人工选取聚类中心等缺点,提出基于网格的密度峰值聚类(G-DPC)算法。采用基于网格的方式进行网格划分,用网格代表点替换网格单元整体;对各代表点聚类,通过改进的自适应方法选出核心网格代表点作为聚类中心;将剩余点归类,剔除噪声点。仿真实验验证了该算法对大规模数据集和高维数据集聚类的有效性。  相似文献   

12.
针对密度峰值聚类算法(DPC)的聚类结果对截断距离[dc]的取值较为敏感、手动选取聚类中心存在着一定主观性的问题,提出了一种结合鲸鱼优化算法的自适应密度峰值聚类算法(WOA-DPC)。利用加权的局部密度和相对距离乘积的斜率变化趋势实现聚类中心的自动选择,避免了手动选取导致的聚类中心少选或多选的情况;考虑到合理的截断距离[dc]是提高DPC算法聚类效果的重要因素,建立以ACC指标为目标函数的优化问题,利用鲸鱼优化算法(WOA)有效地寻优能力对目标函数进行优化,寻找最佳的截断距离[dc];利用人工合成数据集与UCI上的真实数据集对WOA-DPC算法进行测试。实验结果表明,该算法在FMI、ARI和AMI指标上均优于DPC算法、DBSCAN算法以及K-Means算法,具有更好的聚类表现。  相似文献   

13.
为了解决密度峰值聚类算法(Density Peaks Clustering algorithm,DPC)设置截止距离和选择聚类中心过程中的问题,一种新的自调节步长果蝇优化算法被用于密度峰值聚类的重要参数截止距离的计算,设计了一种自适应选择聚类中心的方法.在截止距离计算过程中,根据迭代过程中每一步之间的最优浓度与最差浓度的差值变化率动态的调节寻优步长,其寻优效率与精度均优于现存的改进果蝇算法.在聚类中心的选择过程中,由局部密度与距离乘积的分布情况,自适应的选择聚类中心.本文提出的自调节步长果蝇优化的自适应密度峰值聚类算法的计算精度和效率均优于现存的密度峰值聚类改进算法,并能完全自适应的实现数据的聚类.  相似文献   

14.
密度峰值聚类算法(DPC)能够有效地进行非球形数据的聚类,该算法需要输入截断距离,人工截取聚类中心,导致DPC算法的聚类效果有时较差。针对这些问题,提出一种结合密度比和系统演化的密度峰值聚类算法(DS-DPC)。利用自然最近邻搜索得出各样本点的邻居数目,根据密度比思想改进密度计算公式,使其能够反映周围样本的分布情况;对局部密度与相对距离的乘积进行降序排列,根据排序值选出聚类中心,将剩余样本按照DPC算法的分配策略进行聚类,避免了手动选择聚类中心的主观性;利用系统演化方法判断聚类结果是否需要合并或分离。通过在多个数据集上进行实验,并与其他聚类算法进行比较,实验结果表明,该算法具有较好的聚类效果。  相似文献   

15.
张清华  周靖鹏  代永杨  王国胤 《软件学报》2023,34(12):5629-5648
密度峰值聚类(density peaks clustering, DPC)是一种基于密度的聚类算法,该算法可以直观地确定类簇数量,识别任意形状的类簇,并且自动检测、排除异常点.然而, DPC仍存在些许不足:一方面, DPC算法仅考虑全局分布,在类簇密度差距较大的数据集聚类效果较差;另一方面, DPC中点的分配策略容易导致“多米诺效应”.为此,基于代表点(representative points)与K近邻(K-nearest neighbors, KNN)提出了RKNN-DPC算法.首先,构造了K近邻密度,再引入代表点刻画样本的全局分布,提出了新的局部密度;然后,利用样本的K近邻信息,提出一种加权的K近邻分配策略以缓解“多米诺效应”;最后,在人工数据集和真实数据集上与5种聚类算法进行了对比实验,实验结果表明,所提出的RKNN-DPC可以更准确地识别类簇中心并且获得更好的聚类结果.  相似文献   

16.
一种改进的聚类算法及其在说话人识别上的应用   总被引:3,自引:5,他引:3  
董国华 《微计算机信息》2004,20(9):134-135,22
目前应用最广泛的模糊聚类算法是基于目标函数的模糊k-均值算法.针对该算法存在的缺点。本文提出一种改进的聚类算法.利用遗传算法的全局优化的特点,在能够在正确获得未知对象的聚类中心数目的同时.克服模糊k-均值算法对初始中心点影响的缺陷。将该聚类算法用于确定EBF(椭圆基函数)网络的隐层节点和中心值等参数,在不依赖文本的话者确认实验中.获得了较好的识别效果。  相似文献   

17.
《软件》2017,(4):85-90
基于密度的聚类算法(Density Peak Clustering,DPC)广泛使用在处理非球形数据集的聚类问题,算法使用较少的参数就能够实现数据集的处理。但该算法存在这样一些的不足:首先,全局变量的设定没有考虑数据的局部结构,特别是当不同类别的局部密度差别很大的情况下,容易忽略一些密度较小的类别,聚类效果不理想。其次,DPC提出了一种通过决策图来人工选取聚类中心点的方法,这也是DPC算法在人工智能数据分析的一个重大缺陷。为此,本文提出了基于K近邻的模糊密度峰值聚类算法,算法针对这两方面的不足进行了改进。最后本文使用人工数据集和UCI数据集进行了实验,实验结果表明本文所提出的算法,在不通过人工选取聚类中心的情况下,能够正确地找出类别个数,并且保持着较高的聚类精确度,验证了算法的有效性。  相似文献   

18.
密度峰值聚类(DPC)方法能够快速地对数据进行聚类,而不管它们的形状和包含它们的空间的维数,近年来得到广泛研究和应用。然而,当各个聚类中心的密度的差异较大,或者同一个类中包含多个密度中心时,DPC计算效果受到影响。针对于此,提出了基于密度二分法的密度峰值聚类方法。首先,求出全部数据平均密度,将数据分为高密度点和低密度点,然后,根据高密度的点的决策图识别出聚类中心后,根据是否存在可达距离的数据点对同类的聚类中心实现合并。最后,根据提出的分配策略,使高密度点和低密度点都分配到合适的聚类中心,从而实现聚类。在多个合成及实际数据集上的实验表明,该方法的聚类效果明显优于已有的DPC方法。  相似文献   

19.
密度峰值聚类算法(Density Peaks Clustering,DPC),是一种基于密度的聚类算法,该算法具有不需要指定聚类参数,能够发现非球状簇等优点。针对密度峰值算法凭借经验计算截断距离[dc]无法有效应对各个场景并且密度峰值算法人工选取聚类中心的方式难以准确获取实际聚类中心的缺陷,提出了一种基于基尼指数的自适应截断距离和自动获取聚类中心的方法,可以有效解决传统的DPC算法无法处理复杂数据集的缺点。该算法首先通过基尼指数自适应截断距离[dc],然后计算各点的簇中心权值,再用斜率的变化找出临界点,这一策略有效避免了通过决策图人工选取聚类中心所带来的误差。实验表明,新算法不仅能够自动确定聚类中心,而且比原算法准确率更高。  相似文献   

20.
王宏杰  师彦文 《计算机科学》2017,44(Z11):457-459, 502
为了提高传统K-Means聚类算法的聚类准确性,提出一种结合初始中心优化和特征加权的改进K-Means聚类算法。首先,根据样本特征对聚类的贡献程度获得初始特征权重,构建一种加权距离度量。其次,利用提出的初始聚类中心选择方法获得k个初始聚类中心,并结合初始特征权重进行初步聚类。然后,根据聚类精度来调整特征权重并再次执行聚类过程。重复执行上述过程直到聚类精度不再变化,获得最终的聚类结果。在UCI数据库上的实验结果表明,与现有相关K-Means聚类算法相比,该算法具有较高的聚类准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号