共查询到17条相似文献,搜索用时 121 毫秒
1.
基于PrefixSpan的序列模式挖掘改进算法 总被引:1,自引:0,他引:1
针对序列模式挖掘算法PrefixSpan在挖掘过程中需要构造大量投影数据库的不足,提出IPMSP算法,在递归挖掘过程中,通过检查序列数据库关于前缀的前缀,避免对同一频繁前缀模式构造重复投影数据库,同时舍弃对非频繁项的存储并在投影序列数小于最小支持度时停止扫描投影数据库,从而提高PrefixSpan算法的时空性能。实验结果证明,IPMSP算法在时间和空间性能上优于PrefixSpan算法。 相似文献
2.
多维序列模式挖掘是在序列模式挖掘的基础上发展起来的,文章阐述了有关概念,介绍了两种序列模式挖掘算法:GSP算法和PrefixSpan算法,在对两类算法进行比较分析的基础上形成了挖掘多维序列模式的UniSeq算法、Dim-Seq算法和Seq-Dim算法.针对不同维度的模式,各种算法特点不同. 相似文献
3.
序列模式挖掘是从序列数据库中挖掘相对时间或其他模式出现频率高的模式。针对PrefixSpan算法构造投影数据库时开销巨大、扫描效率不高的问题,通过以序列扩展代替项集进行扩展、放弃挖掘序列数小于阈值min_support的投影数据库以及直接递归局部频繁项等方式进行改进,并将改进方法应用于Web用户行为模式挖掘中,对日志记录中的规律进行分析和研究。实验分析表明,相比PrefixSpan算法,该改进算法在算法效率方面有一定的提高。 相似文献
4.
5.
提出一种基于最大频繁模式、模式相似与属性描述相结合的多维序列模式挖掘算法MSP,该算法包括3个步骤:挖掘数据集中的最大频繁模式,每个频繁模式成为一个模式类;比较数据中各序列项序列与各模式类的包含与相似关系;按照一定的规则抽取与各模式类相关的属性,给出以属性为前件、模式类为后件的多维序列规则为形式的多维序列模式挖掘结果.... 相似文献
6.
提出了一种基于H-tree的多维序列模式挖掘算法,首先在序列信息中挖掘序列模式,然后针对每个序列模式,根据包含此模式的所有元组中的多维信息构造H-tree树,挖掘出相应的多维模式,从而得到了多维序列模式。该算法将多维分析方法与序列模式挖掘算法有效地结合在一起,当维度较高时具有较高的性能。 相似文献
7.
序列模式挖掘在入侵检测中的应用研究 总被引:1,自引:0,他引:1
李亮 《计算机工程与科学》2012,34(11):68
入侵检测系统是计算机安全体系中的一个重要构成要素,随着网络数据流量的不断增大,与数据挖掘相结合的入侵检测系统成为了研究热点。本文针对计算机入侵检测中网络安全审计数据的特点,提出了一个改进的PrefixSpan算法,并通过检测一个网络审计记录的实验,进行了结果分析。 相似文献
8.
数据挖掘领域的一个活跃分支就是序列模式的发现,即在序列数据库中找出所有的频繁子序列。介绍序列模式挖掘的基本概念,然后对序列模式中的经典算法PrefixSpan算法和基于PrefixSpan框架的闭合序列模式CloSpan算法进行了描述,并对它们的执行过程及其特点进行了分析与比较,总结了各自的优缺点,指出PrefixSpan算法适用于短序列方面挖掘,而CloSpan算法在长序列或者阈值较低时胜过PrefixSpan算法且CloSpan算法挖掘大型的数据库有更好的性能,得出的结果对序列模式挖掘的设计有重要的参考价值。 相似文献
9.
序列模式挖掘是基于关联规则的频繁项集的挖掘,其实质是在关联模型中加入时间属性。利用改进的PrefixSpan算法对客流计数系统中不同时段的数据进行挖掘分析,给出不同时段的客流高峰的频繁序列模式,对于提高客流计数系统的精度,给管理决策者调配人力,物力,财力提供技术支持,对于最大限度地发掘购物中心的潜力,提高利润,具有重要的经济意义。 相似文献
10.
PretixSpan算法解决了类Apriori算法的不足,但产生的投影数据库花费了较多的存储空间及扫描时间.本文基于PretixSpan算法提出PSD算法,舍弃了对非频繁项的存储及对投影序列数小于最小支持数的投影数据库的扫描,减少了不必要的存储空间,提高了查询速度.实验证明,PSD算法比PretixSpan算法具有更好的时空性能. 相似文献
11.
在加权序列模式挖掘中,基于候选码生成-测试方法的MWSP是目前应用性最好的算法之一,然而在挖掘过程中容易出现候选组合爆炸的情况,为此文章提出了一种高效的加权序列模式挖掘算法(PWSM)。PWSM算法引入k-最小加权支持数概念并利用前缀投影数据库原理有效地避免了候选组合爆炸的发生,并且在挖掘的过程中充分利用最小加权支持数,再次对算法进行优化。实验表明,该算法较MWSP算法能更加有效地从序列数据库中挖掘加权序列模式。 相似文献
12.
提出一种新的闭合序列模式挖掘算法,该算法利用位置数据保存数据项的序列信息,并提出两种修剪方法:逆向超模式和相同位置数据。为了确保格存储的正确性和简洁性,另外还针对一些特殊情况做处理。试验结果表明,在中大型数据库和小支持度的情况下,该算法比CloSpan算法[8]更有效。 相似文献
13.
基于投影数据集的序列模式增量挖掘算法 总被引:1,自引:0,他引:1
提出一种基于投影数据集的序列增量更新算法Inc_SPM,该算法以PrefixSpan算法为基础。首先利用已有的知识得出频繁1序列,然后生成投影数据集以迭代产生频繁k序列;同时为了控制投影数据集的规模,利用等价投影数据集来改进投影终止条件。 相似文献
14.
To efficiently find global patterns from a multi-database, information in each local database must first be mined and summarized at the local level. Then only the summarized information is forwarded to the global mining process. However, conventional sequential pattern mining methods based on support cannot summarize the local information and is ineffective for global pattern mining from multiple data sources. In this paper, we present an alternative local mining approach for finding sequential patterns in the local databases of a multi-database. We propose the theme of approximate sequential pattern mining roughly defined as identifying patterns approximately shared by many sequences. Approximate sequential patterns can effectively summerize and represent the local databases by identifying the underlying trends in the data. We present a novel algorithm, ApproxMAP, to mine approximate sequential patterns, called consensus patterns, from large sequence databases in two steps. First, sequences are clustered by similarity. Then, consensus patterns are mined directly from each cluster through multiple alignment. We conduct an extensive and systematic performance study over synthetic and real data. The results demonstrate that ApproxMAP is effective and scalable in mining large sequences databases with long patterns. Hence, ApproxMAP can efficiently summarize a local database and reduce the cost for global mining. Furthremore, we present an elegant and uniform model to identify both high vote sequential patterns and exceptional sequential patterns from the collection of these consensus patterns from each local databases. 相似文献
15.
OSAF-tree--可迭代的移动序列模式挖掘及增量更新方法 总被引:1,自引:0,他引:1
移动通信技术和无限定位技术的发展积累了海量的、动态增长的时空数据.利用数据挖掘技术从移动用户的时空行为轨迹当中挖掘用户移动序列模式,在移动通信、交通管理、基于位置服务等领域有着广泛的应用前景.由于移动环境网络资源珍贵、数据量大的特点,传统的序列模式挖掘方法在效率上很难满足需求.OSAF-tree算法基于投影的概念,只需要对数据库进行一遍扫描,就可以很好地处理移动序列模式的挖掘及其增量更新和迭代挖掘问题,这是一个非常高效的算法.与已有的方法相比,OSAF-tree算法在性能和I/O代价等方面都具有明显的优势. 相似文献
16.
一种基于频繁序列树的增量式序列模式挖掘算法 总被引:1,自引:0,他引:1
针对目前现有的增量式序列模式挖掘算法没有充分利用先前的挖掘结果,当数据库更新时,需要对数据库进行重复挖掘的问题。本文提出一种基于频繁序列树的增量式序列模式挖掘算法(ISFST),ISFST采用频繁序列树作为序列存储结构,当数据库发生变化时,ISFST算法分两种情况对频繁序列树进行更新操作,通过遍历频繁序列树得到满足最小支持度的所有序列模式。实验结果表明,ISFST算法在时间性能上优于PrefixSpan算法和IncSpan算法。 相似文献
17.
现有的序列模式算法大都需要频繁访问数据库,效率低.本文提出了一种只需访问数据库一次的基于概念的序列模式算法SPC(Sequential Pattern Algorithm Based on Concept).它利用概念来保存信息,通过划分搜索空间得到概念,并在保证数据挖掘结果正确的前提下采用项有序,合并等价子空间和舍弃无效子空间等手段减少搜索空间数量,提高了效率. 相似文献