首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
基于MODIS数据分析了2000~2010年祁连山区植被净初级生产力(Net Primary Productivity,NPP)的空间变化特征。结果显示:祁连山区植被NPP并不高,多年平均植被NPP仅为121.95gC/(m2·a),自东向西植被NPP逐渐减少。不同植被类型其NPP具有明显差异,大体上为:常绿阔叶林平原草地常绿针叶林典型草地农田高寒草甸草地荒漠草地落叶针叶林。祁连山区植被NPP变化在区域间也存在差异。植被NPP呈增长趋势的地区主要分布在青海年南山、拉脊山、达坂山和青海湖及其西侧,约占47.30%;乌鞘岭东部及以东的地区(约占1.97%)植被NPP呈减少趋势。降水是祁连山区植被NPP变化的主要因素,气温对植被NPP的影响并不明显,不合理的人类活动可能是造成部分区域植被NPP减少的重要原因。  相似文献   

2.
三江源地区是我国最重要的生态功能区之一。近年来,受全球气候变暖及日趋频繁的人类活动的影响,三江源地区高寒草甸生态系统退化现象明显。以三江源称多县清水河镇东北部地区为实验区,基于环境小卫星HJ\|1A HSI高光谱数据,结合不同退化程度高寒草甸地面光谱采集和样方调查,采用MLC和SAM方法对不同退化程度的高寒草甸开展了分类研究。结果表明:基于高光谱数据的不同退化程度高寒草甸采用SAM方法分类总体精度达到75%以上,证实了分类方法的可行性,基于高光谱数据分类能有效区分盖度相近、退化程度不同的草地类型,其中SAM分类结果更加精细准确,优于MLC方法,SAM方法对中度退化草甸区分能力最高,对其他退化程度草甸区分能力稍弱。  相似文献   

3.
基于随机森林的遥感土地利用分类及景观格局分析   总被引:1,自引:0,他引:1  
2009年福建平潭综合实验区设立,作为闽台合作及国家对外开放的窗口,其土地利用变化主要受社会经济因素的影响和自然地理环境的制约,也与未来的土地利用规划密切相关.本文利用1990、2000、2010和2017年4期Landsat遥感影像数据,定量分析近27年的土地利用变化对景观格局的影响.结果表明:(1)在选择合适训练样本的情况下,利用随机森林方法可获得较高的遥感土地利用分类精度(4期遥感影像分类的总体精度均在87%以上,Kappa系数均在0.84以上);(2)1990~2017年,水域面积急剧减少31.04 km2,流失的水域主要转化为建设用地和林地;建设用地增加40.98 km2,年平均增长1.52 km2.近十年呈快速增长趋势,年平均增长3.87 km2;(3)在斑块类型级别上,逐年增加的建设用地导致最大斑块占景观面积比例(LPI)、聚合度(AI)和边缘密度(ED)呈上升趋势,其中LPI受到建设用地增加的影响最显著.在景观类型级别上,多样性(SHDI)和景观形状(LSI)呈下降趋势.  相似文献   

4.
基于逐像元一元线性回归模型,应用MODIS NDVI数据对AVHRR-GIMMS NDVI进行时间序列拓展,拓展序列通过一致性检验,基于所建立的1982~2009年植被年最大NDVI数据集,在GIS平台上进行了植被NDVI变化和NDVI与年平均气温、年降水量之间的相关分析。研究结果表明:过去28 a间,植被年最大NDVI呈3个变化阶段:1982~1992年呈小幅上升趋势,1992~2006年呈缓慢下降趋势,2006~2009年呈缓慢回升态势。由空间变异分析得出NDVI变化相对大的区域主要分布在内蒙干旱和半干旱区。21世纪初和20世纪90年代相对于80年代NDVI值升高,3个阶段平均NDVI变化幅度为±0.3。 20世纪初,赤峰地区以及松嫩平原西部地区植被NDVI呈轻度增加的面积占全区6.45%。植被年最大NDVI与年平均气温、年降水量相关性空间差异明显。偏相关系数绝对值,气温大于降水的像元数占54%;综合分析,较降水而言,气温是东北全区植被年最大NDVI的主控影响因子。对于不同植被类型年最大NDVI,受气温影响强度由大到小依次为:森林>草地>沼泽湿地>灌丛>耕地;受降水影响按草地>耕地>灌丛>沼泽湿地>森林依次减弱。  相似文献   

5.
积雪是气候变化的指示器,其变化对地球能量和辐射平衡以及水分循环产生深刻的影响。研究积雪与气候变化的关系是气候变化区域响应的最好实证。利用2000年3月~2011年2月共11 a的MODIS雪盖产品数据、1979~2010年逐日雪深被动微波遥感数据、DEM数据以及地面气象观测数据,通过GIS空间分析及地统计分析功能,系统分析西藏高原雪深、雪盖和雪线的时空变化规律及其对气候变化的响应关系。研究表明:研究区雪深的分布形成了四周山地积雪深度大,中部腹地雪深小的空间格局。1979~1999年平均雪深呈极显著增加趋势,线性倾向率为0.26 cm/10a,1999~2010年则呈下降趋势。逐像元回归分析结果显示,研究区年积雪深度呈增加趋势的像元数占全区像元总数的76.9%,有减少趋势的仅占23.1%;雪盖面积变化总体呈缓慢波动减少趋势,线性倾向率为-3.89万km2/10a;7、8月在中东部念青唐古拉山、南部喜马拉雅山、冈底斯山和昆仑山等山脉一带以及高原腹地局部地区仍存在大面积常年积雪;雪线年平均呈微弱上升趋势,线性倾向率为6.54 m/10a,各季节平均雪线中,秋季雪线的变化对年平均贡献最大;雪线空间分布呈现从东南向西北逐步升高的态势。积雪参数与气候因素的相关分析表明,雪深春秋季主要受风速和日照时数影响,夏冬季则分别是降水量和风速;气温是影响四季积雪覆盖面积的主导因素,春秋季雪线与气温分别呈正相关和负相关。  相似文献   

6.
通过高效液相色谱技术分析了青海省果洛州达日县窝赛乡原生嵩草草甸、严重退化草地及人工草地三类植被土壤中各种氨基酸成分及含量。结果表明:(1)三种类型土壤中都检测出19种常见氨基酸:精氨酸、天冬氨酸、丝氨酸、谷氨酸、苏氨酸、丙氨酸、甘氨酸、氨基丁酸、脯氨酸、蛋氨酸、缬氨酸、苯丙氨酸、异亮氨酸、亮氨酸、胱氨酸、组氨酸、鸟氨酸、赖氨酸、酪氨酸;(2)测定结果表明原生嵩草草甸土壤的氨基酸总量显著高于人工恢复重建草地和严重退化土壤氨基酸,而后两者之间差异不显著。原生高寒草地的土壤(6316.28μgg-1)严重退化草地土壤(2977.10μgg-1)人工恢复重建草地土壤(2975.90μgg-1)。(3)原生高寒草地土壤氨基酸总体呈现下降趋势:5月氨基酸含量最高,随后6月7月的显著下降,8月稍微有所回升,9月氨基酸含量到达最低;严重退化草地土壤与人工恢复重建草地土壤氨基酸含量季节变化相似,氨基酸总量在6月份到达最高点,随后7月8月显著下降,9月份稍微有所回升。  相似文献   

7.
对塔里木河下游输水区植被分布主要区域2000、2002年ETM、2004、2006年ASTER影像景观特征值、景观格局分析,结果表明:2000年输水后,研究区(193726hm2)天然植被面积迅速扩大并呈连片趋势,沙地斑块数量增加但面积减少、聚集度明显减小;除了沙地外其他各地类斑块密度、数量减少,平均斑块面积扩大,各景观类型呈聚集趋势,景观分布趋于连片.转移矩阵计算表明,2000~2006年输水区4275hm2疏林地转化为有林地;4573hm2中、低覆盖度灌草地转化为高覆盖度灌草地;18729hm2低覆盖度灌草地转化为中覆盖度灌草地;2230hm2沙地转化为灌草地,输水后研究区植被面积增加了7345hm2.生态输水有效地遏制了沙漠化扩展.  相似文献   

8.
以甘肃省古浪县冰草湾地区1991、2000和2009年3期Landsat TM影像为数据源,采用基于对象的影像分类方法提取研究区各时期的土地利用/土地覆盖信息,在此基础上分析了研究区土地利用结构变化、土地利用类型转换关系和导致土地利用变化的驱动力因素。结果表明:采用基于对象的影像分类方法精度较高,可以达到准确提取土地利用/土地覆盖信息的目的;1991~2009年,冰草湾地区农田和居民用地的面积持续增加,并向沙漠和盐碱地方向扩张,呈现"人进沙退"的格局;2000~2009年各种土地利用类型之间的相互转换速度明显低于1991~2000年,土地利用状况呈现趋于稳定的趋势。造成土地利用/土地覆盖变化的主要驱动力是引黄灌溉和生态移民工程的实施。  相似文献   

9.
以Landsat遥感影像为数据源,利用面向对象和决策树方法获得多期土地覆被数据;以此为基础,分析了1990~2015年吉林省西部耕地变化与旱田水田转化特征及驱动因素。结果表明:1990~2015年期间,吉林省西部耕地面积增加了2159.33 km2,增速逐渐变缓。旱田面积在1990~2000和2000~2010年期间有小幅增加,但在2010~2015年期间呈减少趋势。水田面积持续扩张,25年间增加了1139.39 km2(51.7%),旱田净转化为水田的面积不断增加,1990~2000年为69.13 km2,2000~2010年为156.19 km2,2010~2015年为288.27 km2。人口和经济的增长是导致耕地面积迅速增长的主要原因,影响水田面积扩张和旱田向水田转化的驱动因素有:科技进步、水利设施建设、政策倾向和利益驱动。最后提出了吉林省西部地区耕地保护的建议,为区域农业生产和生态建设提供科学借鉴。  相似文献   

10.
利用Terra卫星提供的2000年10月1日到2010年4月30日每日雪覆盖产品MOD10A1,提取研究区积雪覆盖指数SCI、积雪日数SCD、积雪初日SCOD及积雪终日SCMD遥感信息,结合同期吉林省界内23个地面气象观测站的同期气温和降水资料,分析该区积雪的变化特征与气温和降水的关系。结果表明:① 吉林省大部分地区积雪日数为30~90 d,东部山区积雪持续时间长、积雪初日日期早以及积雪终日日期晚,中西部地区变化情况相反;② 积雪覆盖指数SCI呈波浪式变化,与积雪季气温呈负相关;③ 积雪日数与气温呈反相关、与降水量呈正相关,与积雪季气温、夏季降水量的相关系数分别为-0.7407、0.6875;积雪初日情况相反,与积雪季气温、夏季平均气温为0.743、0.5479;积雪终日与气温呈反相关、与降水量呈正相关,与积雪季气温、夏季降水量为-0.5214、0.4647。积雪指数均对气温的变化更敏感,气温升高导致积雪初日推迟、积雪终日提前,从而使积雪日数减小;积雪季降水量的增加有利于积雪日数增大,而积雪终日的推迟有利于夏季降水量的增加。  相似文献   

11.
Vegetation dynamics, particularly vegetation growth, are often used as indicators of potential grassland degradation. Grassland vegetation growth can be monitored using remotely sensed data, which has rapid and broad coverage. Grassland ecosystems are an important component of the regional landscape. In this study, we developed an applicable method for monitoring grassland growth. The dynamic variation in the grassland was analysed using Moderate Resolution Imaging Spectroradiometer (MODIS) data. The normalized difference vegetation index (NDVI) was calculated from 2001 to 2010 during the grassland growing season. To evaluate the grassland growth, the use of the growth index (GI) was proposed. According to the GI values, five growth grades were identified: worse, slightly worse, balanced, slightly better, and better. We explored the spatial-temporal variation of grassland growth and the relationship between grassland growth and meteorological factors (i.e. precipitation and temperature factors). Our results indicated that, compared with the multi-year average, the spatial-temporal variation of grassland growth was significantly different between 2001 and 2010. The vegetation growth was worse in 2009 compared with the multi-year average. A GI of ‘worse’ accounted for 66.73% of the area. The vegetation growth in 2003 was the best of the years between 2001 and 2010, and a better GI accounted for 58.08% of the area in 2003. The GI from 2004 to 2008 exhibited significant fluctuations. The correlation coefficient between the GI and precipitation or temperature indicated that meteorological factors likely affected the inter-annual variations in the grassland growth. The peak of the grassland growth season was positively correlated with the spatial patterns of precipitation and negatively correlated with those of temperature. Precipitation during the growing season was the main influence in the arid and semi-arid regions. Monitoring grassland growth using remote sensing can accurately reveal the grassland growth status at the macro-scale in a timely manner. This research proposes an effective method for monitoring grassland growth and provides a reference for the sustainable development of grassland ecosystems.  相似文献   

12.
Using the Carnegie–Ames–Stanford Approach (CASA) model on remote-sensing (RS), climatic, and other related data from 1981 to 2004, the researchers estimated the net primary productivity (NPP) of alpine grassland in northern Tibet. Geographical information system (GIS) techniques were used to analyse the spatial pattern of change in the NPP of alpine grassland and its response to the intensity of human activity. The researchers found that the mean values of NPP on flat (slope gradients <1°) and sunny slopes were relatively lower. Between 1981 and 2004, the NPP of alpine grassland in northern Tibet tended to decrease, but with relatively large annual fluctuations. In northern Tibet, the alpine grassland NPP for high-elevation regions has a greater proportion of area (over 26%) showing a decreasing trend. The change is more significant in areas where the slope is 15–30° and aspect has little influence on the extent of the change. The negative effects of local residential areas on the rate of change of alpine grassland NPP are smaller than those of roads.  相似文献   

13.
Owing to the influence of global change, land cover and land use have changed significantly over the last decade in the cold and arid regions of China, such as Madoi County which is located in the source area of the Yellow River. In this paper, land‐use/cover change and landscape dynamics are investigated using satellite remote sensing (RS) and a geographical information system (GIS). The objectives of this paper are to determine land‐use/cover transition rates between different cover types in the Madoi County over 10 years e.g., from 1990 to 2000. Second, the changes of landscape metrics using various indices and models are quantified. The impact factors of LUCC (Land‐Use land cover Change) are systematically identified by integrating remote sensing as well as statistical data, including climate, frozen soil, hydrological data and the socio‐economic data. Using 30 m×30 m spatial resolution Landsat (Enhanced) Thematic Mapper (TM/ETM+) data in our study area, nine land cover classes can be discriminated. Our results show that Grassland, Marshes and Water Bodies decrease notably, while oppositely, Sands ‐ Gobi and Barren land increase significantly. The number of lakes with an acreage larger than six hectares decreased from 405 in 1990 to 261 in 2000. Numerous small lakes dried out. The area of grassland with a high cover fraction decreased as well, while the surface area of grassland with a medium level of cover fraction increased. The medium cover fraction grassland mainly originates from high cover fraction grassland. The desertification of land is a serious issue. (ii) The inter‐transformations between Grasslands, Barren Land, Sands, Gobi, Water Bodies and Marshes are remarkable. The Shannon–Weaver Diversity Index (SWDI), the Evenness Index (EI) and the extent of Landscape Heterogeneity (LH) has improved. Marshes have become more fragmented hence, with less connected patches. (iii) In the recent 30 years, average annual temperature, the power of evaporation and the index of dryness did increase significantly. Moreover, soil moisture content (SMC) decreased and the drought trend accelerated. The degradation of frozen soil has impacted on the decrease of surface water area and induced a drop in groundwater levels. Monitoring LUCC in sensitive regions would not only benefit from a study of vulnerable ecosystems in cold and high altitude regions, but would provide scientifically based decision‐making tools for local governments as well.  相似文献   

14.
密云水库上游土地利用与景观格局变化特征   总被引:2,自引:0,他引:2  
基于遥感监测的多期土地利用/土地覆盖数据,详细分析了密云水库上游地区近10年土地利用类型的时空转变,并借助Fragstats软件分析了研究区景观格局的变化。研究结果表明:灌木林、有林地、中高覆盖草地始终是研究区的优势类型,维持着景观的基本功能,但土地利用与景观格局在近10年仍发生了较大的变化,2000年前有较多的林草地转变为耕地,之后,大量的耕地实现退耕,林草植被增加迅速。研究区整体景观格局破碎化有增加的趋势,但对水土保持与水源涵养有利的景观类型也在同步增加。  相似文献   

15.
以遥感数据和气象数据为主要数据源,应用改进的光能利用率模型估算徐州市2006、2008和2010年3年间6月份的植被净初级生产力(Net Primary Productivity,NPP),研究了该区域6月份NPP的时空变化及其与气象因子的相关性。结果表明:时间上,受气候和环境等因素综合变化的影响,研究区域6月份NPP呈逐年下降趋势;空间上,NPP的分布表现为在林地、草地和农田相对集中的区域偏高,且不同植被类型6月份的NPP大小关系在不同年份可能不同,其中在2006和2008年为农田>草地>林地,而2010年为农田>林地>草地。通过分析与气象因子的相关性和偏相关性,限制NPP的主要气象因子不是固定不变的,其中2006和2008年,限制NPP的主要气象因子为太阳辐射,而2010年为降雨量和温度。不同植被类型下NPP与气象因子相关性和偏相关性差异反映了不同类型植被生长对光、热、水条件要求的差异。
  相似文献   

16.
Vegetation phenology is the most intuitive and sensitive indicator of seasonal and inter-annual variability under environment conditions.The phenology monitoring methods mainly include field observation,phenology model,digital camera and remote sensing technology.On the Tibetan Plateau,the start of growing season for alpine grassland had four viewpoints:experiencing an advancing and advancing in fluctuating trend,a postponing trend and no change,respectively.Phenology phases experience interactions with climatic factors.These factors,such as temperature,precipitation,CO2 concentration,snow cover and extreme climate,play an important role in alpine grasslandgrowth.Meanwhile,phenology changes at different scales and the driving factors are uncertainty.Finally,the existing problems and the future research directions were discussed.  相似文献   

17.
植被净初级生产力(Net Primary Productivity,NPP)及其对气候变化的响应是全球变化的核心研究内容之一,研究中亚地区NPP的时空格局变化对理解植被—环境的作用机理以及应对全球变化具有重要的意义。基于MOD17A3数据集、气象数据结合GIS分析方法研究中亚地区2000~2014年的植被NPP时空动态特征及其与气候因子的关系。结果表明:①中亚地区空间上NPP的变化范围在0~874 gC/m2·a之间,平均值为151.90 gC/m2·a,NPP年总量平均值为482.41TgC (1 Tg=1012 g),NPP平均值与总量均呈现出下降趋势;②中亚地区NPP的高值区主要分布在高纬度地区和东南部高山地区,中部和南部荒漠区则为NPP的低值区;③中亚地区2000~2014年间NPP在空间上总体呈现下降趋势,达到显著下降的区域总体面积的39.89%。NPP呈下降趋势的区域主要集中在哈萨克斯坦的大部分区域,不同分区内以典型草原区最为显著;④中亚地区NPP受降水量的影响作用高于气温,荒漠草原区、典型草原区以及荒漠区主要受到降水量的控制,高山草甸区与高山林地区则受到降水和气温的共同作用。  相似文献   

18.
The Net Primary Productivity (NPP) of vegetation and its response to climate change is one of the key areas in research of global change. The study on spatial and temporal changes of NPP in central Asia is important to understand the mechanism of vegetation-environment action and to cope with global change. Therefore, based on the MOD17A3 dataset and meteorological data and GIS analysis method, this paper is intended to analyze the spatial pattern, temporal variation and the driving factors to NPP in Central Asia during 2000~2014. The results shows that: ①the spatial variation of NPP in Central Asia is ranged from 0 to 874 gC/m2·a, with an average of 151.90 gC/m2·a. The average annual total NPP is 482.41TgC (1 Tg=1012 g), and both the average NPP and total NPP showed a decrease trend. ②The average NPP was higher in southeastern alpine regions and high latitudes areas than in central and southern desert areas in Central Asia. ③From 2000 to 2014, the annual NPP in central Asia showed a decrease trend with a rate of -2.05 gC/m2·a2, covering 39.89% of the region with significant reduction. The areas in which NPP decreased were mainly distributed in Kazakhstan, with typical steppe zone being the most significant in five ecological zones. ④The effect of precipitation on NPP in Central Asia was stronger than that of temperature. Precipitation influenced NPP of typical steppe,desert and desert steppe more seriously, while alpine meadow and alpine forest were jointly affected by precipitation and temperature.  相似文献   

19.
Tibet, the largest region of the Qinghai–Tibet Plateau, is undergoing extensive grassland deterioration and desertification due to both human and natural factors. Alpine meadow and grassland restoration is difficult after degradation; consequently, the desertification of the Tibetan grassland has attracted substantial social attention. This article considered Amdo, Baingoin, Coqên, and Zhongba counties in Tibet as the study areas, employed remote-sensing data, and developed Tibetan grassland desertification classification indices based on field surveys. Moreover, this study used spectral mixture analysis (SMA) methods to interpret remote-sensing image data from the study areas during three periods (1990, 2000, and 2009) and considered the bare sand (gravel) area proportion as the main basis for the evaluation of grassland desertification. The results of this study demonstrate that the slightly, moderately, and severely desertified grasslands of the monitoring zone covered a total area of 114,113.16 km2 in 1990, accounting for 82.12% of the study area. The area exhibited no change in 2000 and decreased by 4472.31 km2 in 2009. The severely desertified grassland area declined from 1990 to 2009. The degree of grassland desertification in these four Tibetan counties diminished from 1990 to 2009, and the grassland desertification area exhibited a gradual reduction during the same period. Regarding other soil coverage types, the ice and snow area markedly changed and declined to approximately one-third of its original extent during these 20 years, and most of the ice and snow area was converted to bare land and various types of desertified grassland.  相似文献   

20.
基于NDVI及DEM的青海湖北岸景观格局空间自相关分析   总被引:1,自引:0,他引:1  
本文以青海湖北岸为研究区,利用2006年Landsat-5 TM数据,结合植被类型图、SRTM高程数据、1∶5万地形图等数据,获取了该区12类景观类型,分类总体精度为82.91%,Kappa系数为0.81。以NDVI均值、坡向均值、高程均值为区域观测值,计算研究区景观类型的空间自相关性的Moran指数,再根据局部Moran指数的空间集聚分布特征,分析这些景观类型之间的结构稳定性,表现为如下特征:第一,较稳定景观,格局类型包括河谷灌丛、山地灌丛、高寒沼泽、高寒草甸、河流、裸岩;第二,欠稳定景观,格局类型包括湖泊、温性草原、湖滨沼泽;第三,极不稳定景观,格局类型有沙地、石砾地、裸土地,如鸟岛、金沙湾,尕海地区的沙地。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号