首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This paper reports on the fabrication and characterization of flexural electrostatic microresonators based on doped thin-film hydrogenated amorphous and nanocrystalline silicon processed at temperatures below 110/spl deg/C using surface micromachining on glass substrates. The microelectromechanical structures are bridges made of either phosphorus-doped hydrogenated amorphous silicon (n/sup +/-a-Si:H) deposited by plasma-enhanced chemical vapor deposition (PECVD) or boron-doped hydrogenated nanocrystalline silicon (p/sup +/-nc-Si:H) deposited by hot-wire chemical vapor deposition (HWCVD). The microbridges, which are suspended over an aluminum (Al) gate electrode, are electrostatically actuated and the mechanical resonance is detected in vacuum using an optical detection method. The resonance frequency and energy dissipation mechanisms involved in thin-film silicon based microresonators are studied as a function of the geometrical dimensions of the structures. Resonance frequencies up to 36 MHz are observed and a Young's modulus of 147 GPa is extracted for n/sup +/-a-Si:H, and of 165 GPa for the p/sup +/-nc-Si:H films. Quality factors as high as 5000 and 2000 are observed for the n/sup +/-a-Si:H and p/sup +/-nc-Si:H resonators, respectively, and are limited by surface losses. The effect on the resonance frequency and quality factor of depositing a metal layer on the thin-film silicon structural layer is studied.  相似文献   

2.
We have investigated the effect of trimethylsilane ([(CH/sub 3/)/sub 3/SiH] or 3MS) flow rate on the growth of SiC thin-film on single-crystal sapphire substrate for fiber-optic temperature sensor. The SiC film thickness was in the range of 2-3 /spl mu/m. The variation of the 3MS flow rate affected the structural properties of the SiC films. This, in turn, changed the optical properties and temperature sensing performance of the sensors. Optical reflection from the SiC thin-film Fabry-Pe/spl acute/rot interferometers showed one-way phase shifts in resonant minima on all measured samples. Linear fits to the resonant minima (at 660 to 710 nm) versus temperature provide the corresponding thermal expansion coefficient, /spl kappa//sub /spl phi//, of 1.7-1.9/spl times/10/sup -5///spl deg/C. With the optimized 3MS flow rate, the SiC temperature sensor exhibits a temperature accuracy of /spl plusmn/2.8/spl deg/C from 22 to 540/spl deg/C. The short-term SiC sensor stability at 532/spl deg/C for two weeks shows a very small standard deviation of 0.97/spl deg/C.  相似文献   

3.
A new generation of microbolometers were designed, fabricated and tested for the NASA CERES (Clouds and the Earth's Radiant Energy System) instrument to measure the radiation flux at the Earth's surface and the radiant energy now within the atmosphere. These detectors are designed to measure the earth radiances in three spectral channels consisting of a short wave channel of 0.3 to 5 /spl mu/m, a wide-band channel of 0.3 to 100 /spl mu/m and a window channel from 8 to 12 /spl mu/m each housing a 1.5 mm x 1.5 mm microbolometers or alternatively 400 /spl mu/m x 400 mm microbolometers in a 1 /spl times/ 4 array of detectors in each of the three wavelength bands, thus yielding a total of 12 channels. The microbolometers were fabricated by radio frequency (RF) magnetron sputtering at ambient temperature, using polyimide sacrificial layers and standard micromachining techniques. A semiconducting YBaCuO thermometer was employed. A double micromirror structure with multiple resonance cavities was designed to achieve a relatively uniform absorption from 0.3 to 100 /spl mu/m wavelength. Surface micromachining techniques in conjunction with a polyimide sacrificial layer were utilized to create a gap underneath the detector and the Si/sub 3/N/sub 4/ bridge layer. The temperature coefficient of resistance was measured to be -2.8%/K. The voltage responsivities were over 10/sup 3/ V/W, detectivities above 10/sup 8/ cm Hz/sup 1/2//W, noise equivalent power less than 4 /spl times/ 10/sup -10/W/Hz/sup 1/2/ and thermal time constant less than 15 ms.  相似文献   

4.
This work presents a microsystem that utilizes inductive power and data transfer through a backscatter-modulated carrier and a transducer interface that monitors its environment through embedded capacitive transducers. Formed on a single chip, transducers for temperature, pressure, and relative humidity are realized using a silicon-on-glass process that combines anodic bonding and a silicon-gold eutectic to realize vacuum-sealed cavities with low-impedance (6 /spl Omega/) electrical feedthroughs. Temperature is sensed capacitively using a row of Si/Au bimorph beams that produce a sensitivity of 15 fF//spl deg/C from 20 to 100/spl deg/C. The absolute pressure sensors have a sensitivity of 15 fF/torr and a range from 500 to 1200 torr, while the relative humidity sensor responds with 39 fF/%RH from 20 to 95%RH. A relaxation oscillator implements low-power capacitance-to-frequency conversion on a second chip with a sensitivity of 750 Hz/pF at 10 kHz, forming a 341 /spl mu/W transducer interface. The system is remotely powered by a 3-MHz carrier and has a volume of 32 mm/sup 3/, including the hybrid antenna wound around the perimeter of the system.  相似文献   

5.
Single crystal silicon nano-wire piezoresistors for mechanical sensors   总被引:4,自引:0,他引:4  
A p-type silicon (Si) nano-wire piezoresistor, whose minimum cross-sectional area is 53 nm/spl times/53 nm, was fabricated by combination of thermal diffusion, EB (electron beam) direct writing and RIE (reactive ion etching). The maximum value of longitudinal piezoresistance coefficient /spl pi//sub l[011]/ of the Si nano-wire piezoresistor was found to be 48/spl times/10/sup -5/ (1/MPa) at surface impurity concentration of 5/spl times/10/sup 19/ (cm/sup -3/) and it has enough sensitivity for mechanical sensor applications. The longitudinal piezoresistance coefficient /spl pi//sub l[011]/ of the Si nano-wire piezoresistor increased up to 60% with a decrease in the cross sectional area, while transverse piezoresistance coefficient /spl pi//sub t[011]/ decreased with a increase in the aspect ratio of the cross section. These phenomena were briefly investigated based on a hole energy consideration and FEM (finite element method) stress analysis.  相似文献   

6.
In this work, we present the fabrication of bulk micromachined microbolometers made of amorphous germanium-silicon-oxygen compounds (Ge/sub x/Si/sub 1-x/O/sub y/) grown by reactive sputtering of a Ge/sub 0.85/Si/sub 0.15/ target. We describe the complete procedure for fabricating thermally isolated microbolometers consisting of Ge/sub x/Si/sub 1-x/O/sub y/ sensing films deposited on sputtered silicon dioxide membranes suspended over a silicon substrate. The electrical properties of the sensitive material are set by controlling the deposition parameters of the sputtering technique. Under optimum deposition conditions, Ge/sub x/Si/sub 1-x/O/sub y/ layers with moderate electrical resistivity and thermal coefficient at room temperature as high as -4.2% /spl middot/ K/sup -1/ can be obtained. Isolated structures measured at atmospheric pressure in air have a thermal conductance of 3 /spl times/ 10/sup -6/ W /spl middot/ K/sup -1/ and a thermal capacitance of 6/spl middot/10/sup -9/ W /spl middot/ s /spl middot/ K/sup -1/, yielding a response time of 1.8 ms. Bolometers with an IR responsivity of 380 V /spl middot/ W/sup -1/ and a NEDT of 3.85 K at 100 nA bias current are obtained. The use of sputtered films allows designing a fully low-temperature fabrication process, wholly compatible with silicon integrated circuit technologies.  相似文献   

7.
The measured performance of a column-type microthermoelectric cooler, fabricated using vapor-deposited thermoelectric films and patterned using photolithography processes, is reported. The columns, made of p-type Sb/sub 2/Te/sub 3/ and n-type Bi/sub 2/Te/sub 3/ with an average thickness of 4.5 /spl mu/m, are connected using Cr/Au/Ti/Pt layers at the hot junctions, and Cr/Au layers at the cold junctions. The measured Seebeck coefficient and electrical resistivity of the thermoelectric films, which were deposited with a substrate temperature of 130/spl deg/C, are -74 /spl mu/V/K and 3.6/spl times/10/sup -5/ /spl Omega/-m (n-type, power factor of 0.15 mW/K/sup 2/-m), and 97 /spl mu/V/K and 3.1/spl times/10/sup -5/ /spl Omega/-m (p-type, power factor of 0.30 mW/K/sup 2/-m). The cooling performance of devices with 60 thermoelectric pairs and a column width of 40 /spl mu/m is evaluated under a minimal cooling load (thermobuoyant surface convection and surface radiation). The average cooling achieved is about 1 K. Fabrication challenges include the reduction of the column width, implementation of higher substrate temperatures for optimum thermoelectric properties, and improvements of the top connector patterning and deposition.  相似文献   

8.
The MIT micro-gas turbine engine requires an integrated fuel-metering device in order to implement on-board engine control. Graded fuel control can be achieved with an array of on/off valves. Each valve in the array must withstand an annealing temperature of 1100/spl deg/C during fabrication and open against 1 MPa of supply pressure at 400/spl deg/C operating temperature. This paper presents the design, fabrication and testing of an electrostatic, on/off silicon prototype valve. Tested with nitrogen at room temperature, the valve opened against a differential pressure of 0.9 MPa with 136 V and delivered a mass flow rate of 45 sccm (3.38 g/h). At 0.1y MPa upstream pressure, the helium leak-rate was measured to be 6/spl times/10/sup -3/ sccm. The valve showed no sign of failure after being continuously actuated for more than 10/sup 5/ cycles. The prototype valve will serve as the base-line design for the engine fuel valve array.  相似文献   

9.
Magnetic MEMS reconfigurable frequency-selective surfaces   总被引:1,自引:0,他引:1  
A reconfigurable frequency-selective electromagnetic filter implemented by integrating hard magnetic materials with microelectromechanical systems (MEMS) provides a new variation of reconfigurable frequency-selective surfaces (FSS). By incorporating magnetically actuated dipole elements that are capable of being tilted away from the supporting surface, we can tune the FSSs operating frequency without having to physically alter the dimensions of the dipole elements. The 25/spl times/25 array of microactuators used in this work each consist of a 896/spl times/168/spl times/30 /spl mu/m/sup 3/ ferromagnetic plate made of 40Co-60Ni, layered with a 1-/spl mu/m-thick conductor (Au), attached to a pair of 400/spl times/10/spl times/1 /spl mu/m/sup 3/ polysilicon torsion beams, suspended just above the supporting substrate. The high remanent magnetization of the ferromagnetic material allows for relatively small magnetic fields (/spl sim/2.1 kA/m) to induce significant angular deflections (/spl sim/45/spl deg/). This innovative reconfigurable FSS design has successfully demonstrated electromagnetic-signal diplexing and tuning its resonant frequency over a bandwidth of 2.7 GHz at a frequency of 85 GHz.  相似文献   

10.
Variations in micromachining processes cause submicron differences in the size of MEMS devices, which leads to frequency scatter in resonators. A new method of compensating for fabrication process variations is to add material to MEMS structures by the selective deposition of polysilicon. It is performed by electrically heating the MEMS in a 25/spl deg/C silane environment to activate the local decomposition of the gas. On a (1.0/spl times/1.5/spl times/100) /spl mu/m/sup 3/, clamped-clamped, polysilicon beam, at a power dissipation of 2.38 mW (peak temperature of 699/spl deg/C), a new layer of polysilicon (up to 1 /spl mu/m thick) was deposited in 10 min. The deposition rate was three times faster than conventional LPCVD rates for polysilicon. When selective polysilicon deposition (SPD) was applied to the frequency tuning of specially-designed, comb-drive resonators, a correlation was found between the change in resonant frequency and the length of the newly deposited material (the hotspot) on the resonator's suspension beams. A second correlation linked the length of the hotspot to the magnitude of the power fluctuation during the deposition trial. The mechanisms for changing resonant frequency by the SPD process include increasing mass and stiffness and altering residual stress. The effects of localized heating are presented. The experiments and simulations in this work yield guidelines for tuning resonators to a target frequency.  相似文献   

11.
Cross-linked PMMA as a low-dimensional dielectric sacrificial layer   总被引:6,自引:0,他引:6  
A surface nanomachining fabrication process using electron beam cross-linked poly(methyl) methacrylate (PMMA) has been developed and characterized. PMMA with different molecular weights (MW 100 K, MW 495 K, MW 950 K) in anisole casting solvent has been crosslinked with different electron beam irradiation levels ranging from 20 C/m/sup 2/ to 240 C/m/sup 2/. This is to investigate the quantifiable relationship between electron dose and its submicrometer remaining thickness after dissolving in acetone. This technique which uses electron beam lithography, offers a high resolution semi-three-dimensional (3-D) nanomachining of the sacrificial layer in a single run. Because of its low Young's modulus, it has been successfully integrated with nanoelectromechanical systems processing and has the advantage of producing low-stress submicrometer thick structures with lateral dimensions as low as, but not limited to 1 /spl mu/m. A fast dry release time from 55 to 100 s using oxygen plasma ashing has been demonstrated for a sacrificial layer aspect ratio of 125. This corresponds to an etch rate of about 0.6 /spl mu/m/s at an average temperature of 40/spl deg/C. The success of using cross-linked PMMA as a gate dielectric is demonstrated by the fabrication of multilayered gated lateral quantum dot devices. Periodic and continuous conductance oscillations arising from Coulomb charging effects are clearly observed in the transport properties at 50 mK.  相似文献   

12.
This work, the second of two parts, reports on the implementation and characterization of high-quality factor (Q) side-supported single crystal silicon (SCS) disk resonators. The resonators are fabricated on SOI substrates using a HARPSS-based fabrication process and are 3 to 18 /spl mu/m thick. They consist of a single crystal silicon resonant disk structure and trench-refilled polysilicon drive and sense electrodes. The fabricated resonators have self-aligned, ultra-narrow capacitive gaps in the order of 100 nm. Quality factors of up to 46 000 in 100 mTorr vacuum and 26000 at atmospheric pressure are exhibited by 18 /spl mu/m thick SCS disk resonators of 30 /spl mu/m in diameter, operating in their elliptical bulk-mode at /spl sim/150 MHz. Motional resistance as low as 43.3 k/spl Omega/ was measured for an 18-/spl mu/m-thick resonator with 160 nm capacitive gaps at 149.3 MHz. The measured electrostatic frequency tuning of a 3-/spl mu/m-thick device with 120 nm capacitive gaps shows a tuning slope of -2.6 ppm/V. The temperature coefficient of frequency for this resonator is also measured to be -26 ppm//spl deg/C in the temperature range from 20 to 150/spl deg/C. The measurement results coincide with the electromechanical modeling presented in Part I.  相似文献   

13.
This paper describes a laterally deflecting micromachined device that offers high sensitivity and wide dynamic range to electronically monitor the thermal expansion coefficient, tensile and compressive residual strain and Young's modulus of microstructural materials, as well as the temperature dependence of these properties. The device uses sidewall capacitance between interdigitated tines to sense displacement caused by the release of residual stress in a bent-beam suspension. Electrostatic force is used to obtain load-deflection profiles. The suspensions and tines are arranged such that output is a differential readout, immune to common mode parasitic capacitance. Analytical and numerical modeling results are presented and the device concept is verified by three different fabrication approaches using polysilicon and nickel as structural materials. Measured values of residual strain, thermal expansion and Young's modulus are very consistent with measurements taken by other approaches and those reported previously. For example, the residual strain in certain electrodeposited Ni structures was tracked from 68.5 microstrain at 23/spl deg/C to -420 microstrain at 130/spl deg/C, providing an expansion coefficient of 8.2 ppm/K; the best fit Young's modulus provided by the device was 115 GPa.  相似文献   

14.
Microelectromechanical systems (MEMS) accelerometers based on piezoelectric lead zirconate titanate (PZT) thick films with trampoline or annular diaphragm structures were designed, fabricated by bulk micromachining, and tested. The designs provide good sensitivity along one axis, with low transverse sensitivity and good temperature stability. The thick PZT films (1.5-7 /spl mu/m) were deposited from an acetylacetonate modified sol-gel solution, using multiple spin coating, pyrolysis, and crystallization steps. The resulting films show good dielectric and piezoelectric properties, with P/sub r/ values >20 /spl mu/C/cm/sup 2/, /spl epsiv//sub r/>800, tan/spl delta/<3%, and |e/sub 31,f/| values >6.5 C/m/sup 2/. The proof mass fabrication, as well as the accelerometer beam definition step, was accomplished via deep reactive ion etching (DRIE) of the Si substrate. Measured sensitivities range from 0.77 to 7.6 pC/g for resonant frequencies ranging from 35.3 to 3.7 kHz. These accelerometers are being incorporated into packages including application specific integration circuit (ASIC) electronics and an RF telemetry system to facilitate wireless monitoring of industrial equipment.  相似文献   

15.
This work presents the design, fabrication, and testing of a two-axis 320 pixel micromirror array. The mirror platform is constructed entirely of single-crystal silicon (SCS) minimizing residual and thermal stresses. The 14-/spl mu/m-thick rectangular (750/spl times/800 /spl mu/m/sup 2/) silicon platform is coated with a 0.1-/spl mu/m-thick metallic (Au) reflector. The mirrors are actuated electrostatically with shaped parallel plate electrodes with 86 /spl mu/m gaps. Large area 320-mirror arrays with fabrication yields of 90% per array have been fabricated using a combination of bulk micromachining of SOI wafers, anodic bonding, deep reactive ion etching, and surface micromachining. Several type of micromirror devices have been fabricated with rectangular and triangular electrodes. Triangular electrode devices displayed stable operation within a (/spl plusmn/5/spl deg/, /spl plusmn/5/spl deg/) (mechanical) angular range with voltage drives as low as 60 V.  相似文献   

16.
An innovative release method of polymer cantilevers with embedded integrated metal electrodes is presented. The fabrication is based on the lithographic patterning of the electrode layout on a wafer surface, covered by two layers of SU-8 polymer: a 10-/spl mu/m-thick photo-structured layer for the cantilever, and a 200-/spl mu/m-thick layer for the chip body. The releasing method is based on dry etching of a 2-/spl mu/m-thick sacrificial polysilicon layer. Devices with complex electrode layout embedded in free-standing 500-/spl mu/m-long and 100-/spl mu/m-wide SU-8 cantilever were fabricated and tested. We have optimized major fabrication steps such as the optimization of the SU-8 chip geometry for reduced residual stress and for enhanced underetching, and by defining multiple metal layers [titanium (Ti), aluminum (Al), bismuth (Bi)] for improved adhesion between metallic electrodes and polymer. The process was validated for a miniature 2/spl times/2 /spl mu/m/sup 2/ Hall-sensor integrated at the apex of a polymer microcantilever for scanning magnetic field sensing. The cantilever has a spring constant of /spl cong/1 N/m and a resonance frequency of /spl cong/17 kHz. Galvanometric characterization of the Hall sensor showed an input/output resistance of 200/spl Omega/, a device sensitivity of 0.05 V/AT and a minimum detectable magnetic flux density of 9 /spl mu/T/Hz/sup 1/2/ at frequencies above 1 kHz at room temperature. Quantitative magnetic field measurements of a microcoil were performed. The generic method allows for a stable integration of electrodes into polymers MEMS and it can readily be used for other types of microsensors where conducting metal electrodes are integrated in cantilevers for advanced scanning probe sensing applications.  相似文献   

17.
The importance of service environment to the fatigue resistance of n/sup +/-type, 10 /spl mu/m thick, deep-reactive ion-etched (DRIE) silicon structural films used in microelectromechanical systems (MEMS) was characterized by testing of electrostatically actuated resonators (natural frequency, f/sub 0/, /spl sim/40 kHz) in controlled atmospheres. Stress-life (S-N) fatigue tests conducted in 30/spl deg/C, 50% relative humidity (R.H.) air demonstrated the fatigue susceptibility of silicon films. Further characterization of the films in medium vacuum and 25% R.H. air at various stress amplitudes revealed that the rates of fatigue damage accumulation (measured via resonant frequency changes) are strongly sensitive to both stress amplitude and, more importantly, humidity. Scanning electron microscopy of high-cycle fatigue fracture surfaces (cycles to failure, N/sub f/>1/spl times/10/sup 9/) revealed clear failure origins that were not observed in short-life (N/sub f/<1/spl times/10/sup 4/) specimens. Reaction-layer and microcracking mechanisms for fatigue of silicon films are discussed in light of this empirical evidence for the critical role of service environment during damage accumulation under cyclic loading conditions.  相似文献   

18.
In this paper, we report on the optical characterization of a micromachined gyroscope prototype for automotive applications, by means of feedback interferometry. In order to directly detect the rotation-induced Coriolis force, we have developed a compact and stable interferometric setup, which has been positioned inside a small vacuum bell, mounted on a rotating table. By this setup, which has a noise limit of the order of 10/sup -11/ m/(Hz)/sup 1/2/, we have measured the gyro responsivity curve, demonstrating the feasibility of the optical interferometric detection of the in-plane response of a MEMS sensor. In addition, we have carried out the full mechanical characterization of the device at different pressures, and we have performed the matching of the gyro resonance frequencies by the interferometric monitoring. Our gyro had a resonance frequency of 3986 Hz for both axes after tuning; at a pressure of 7 10/sup -2/ torr, the quality factor were Q=18000 for the driving axis and Q=1800 for the sensing axis, while the measured responsivity was 7 10/sup -10/ m/(/spl deg//s). The optical characterization represents an important feedback to the designer and is especially powerful in the case of prototypes for which the on-board electronics is not yet available.  相似文献   

19.
In this paper, we demonstrate eliminating the stress gradient in polycrystalline silicon germanium films at temperatures compatible with standard CMOS (Al interconnects) backend processing. First, we study the effect of varying the germanium concentration from 40% to 90%, layer thickness, deposition pressure from 650 to 800 mtorr and deposition temperature from 400 to 450/spl deg/C, on the mechanical properties of SiGe films. Then the effect of excimer laser annealing (248 nm, 38 ns, 780 mJ/cm/sup 2/) on stress gradient is analyzed. It is demonstrated that stress gradient can be eliminated completely by depositing Si/sub x/Ge/sub 1-x/(10%相似文献   

20.
Effect of electrode geometry on performance of an EHD thin-film evaporator   总被引:3,自引:0,他引:3  
This paper presents details of an optimization process of electrode geometry for an electrohydrodynamically (EHD) driven thin-film evaporator. The operation principle of the device is based on the action of the EHD force on the molecules of a dielectric liquid in a highly convergent electric field. The force starts at the end of a pair of electrodes, where the electric field changes from zero far from the electrodes to a finite value in between the electrodes. This force drives the liquid up into the spacing between the electrodes. The electrodes in this study were deposited thinly on a SiO/sub 2//Si wafer, so the liquid could be held within micrometers of thickness over the surface. Since the performance of the device in removing heat from the surface is a function of its pumping head and consequently its electrode geometry, the performances of different electrodes were evaluated by testing twelve sets of electrode pairs with different geometries. Then the optimum electrode design was incorporated into the design of a large size (32/spl times/32 mm/sup 2/) EHD thin-film evaporator. The device was fabricated, and its pumping and heat transfer performances were tested. A pumping head equal to the full height of the electrodes and a heat transfer coefficient of 1.9 W/cm/sup 2/./spl deg/C was achieved using HFE-7100 liquid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号