首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tool path planning for automated manufacturing processes is a computationally complex task. This paper addresses the problem of tool path integration in the context of spray-forming processes. Tool paths for geometry-complicated parts are generated by partitioning them into individual freeform surfaces, generating the paths for each partition, and then, finally, interconnecting the paths from the different patches so as to minimize the overall path length. We model the problem as a variant of the rural postman problem (RPP), which we call open-RPP. In this paper, we present two different solutions to the open-RPP. The first solution is based on genetic algorithms and the second one is based on ant colony optimization. This paper presents and compares the results from both methods on sample data and on real-world automotive body parts. We conclude this paper with remarks about the effectiveness of our implementations and the pros and cons of each method.  相似文献   

2.
Complete automation of trajectory planning tools for material deposition/removal applications has become increasingly necessary to reduce the ldquoconcept-to-consumerrdquo timeline for rapid product introduction in industries such as the automotive industry. The work in this paper is specifically motivated by automotive spray painting. Prior developments in automated trajectory planning tools promise to reduce the time required to program the robots; however, these approaches are limited to surfaces that are either approximately planar or topologically simple (i.e., with no holes). To extend the applicability of these planning tools to nonplanar and topologically complex surfaces, currently the user has to manually segment a complex surface into simpler subsets, i.e., subsets that are approximately extruded surfaces and contain no holes. However, the complex nature of the relationships between surface segmentation and resulting output characteristics such as material deposition uniformity, process cycle time, and material waste makes the task of manually segmenting the surface difficult. In this paper, we develop a hierarchical procedure that automatically segments a surface based on surface geometry, surface topology, and path geometry to obtain topologically simple subsets that are approximately extruded surfaces. Finally, we compare the effectiveness of our segmentation with the state of the art on a few automotive surfaces in simulation.  相似文献   

3.
This paper discusses a systematic approach to implement the principles of Flat Pattern Analysis FPA for folding sheet metal products. The paper starts by highlighting the needs for the vehicular structure forming process with respect to the main production line requirements through using Quality Function Deployment QFD matrix. Additionally, the potentials of fold forming for sheet metal parts in achieving the major production needs will then be benchmarked against other forming techniques through a decision making tool namely; the Analytical Hierarchy Process AHP. The study investigates the application of flat pattern tools for sheet metal products derived from analysis for thin or zero thickness sheets (i.e. paper origami). The analysis sets an approach to generate all possible configurations of flat patterns that result in a specific 3-D structure profile. Secondly, a set of optimality selection metrics are developed and applied to these configurations to help determine the most optimized flat pattern. These optimality measures are a metric based on compactness, a metric for nesting efficiency to describe the strip layout planning, and two measures to assess the manufacturing aspect i.e. bending operation in terms of number and orientation of bend lines.  相似文献   

4.
In the duplication of a physical part such as die and mold, aerospace part and so on, most of patches are trimmed surfaces resulting from Boolean manipulations. Direct generation of tool paths from the practical parts is a fundamental problem. This paper presents an efficient method for generating NC tool paths from some trimmed surfaces. Three types of control points are determined to construct an underlying NURBS surfaces. NC tool paths are then generated based on these surfaces. The method can deal efficiently with parts composed of trimmed surfaces. It can be considered as a tool for reverse engineering software integration.  相似文献   

5.
NURBS surfaces are commonly used in CAD/CAM software systems to represent the complex shapes of mechanical parts. Well-planned tool paths for machining the surfaces can significantly increase cutting efficiency and improve part quality. The steepest ascent tool-path pattern has been proposed for making sculptured surfaces in a 3-axis finish milling operation, and it has been proven that a steepest ascent tool-path is inherently more efficient in removing material to make these surfaces within tolerances than a tool path of any other type. However, the mathematical representation of steepest ascent paths on NURBS surfaces has not been addressed. In our work, simplified formulae of these paths are derived, and a comprehensive, efficient algorithm to plan steepest ascent tool-paths on compound NURBS surfaces is developed. To verify its validity and efficiency, this innovative approach is applied to a complicated compound surface. Furthermore, a comparison between the steepest ascent and CATIA tool-paths on two NURBS surfaces is conducted to demonstrate the advantages of the steepest ascent tool-paths for NURBS surface part production.  相似文献   

6.
This paper describes the cutter path planning and cutter interference (gouging) analysis algorithms developed to generate optimal tool path for manufacturing sculptured surfaces on three axes CNC machine tools. Cutter path planning algorithm approximates the parametric curves on three dimensional surfaces by a sequence of straight line segments and generates optimal tool paths by minimizing the number of interpolation points while keeping the path deviations within the specified tolerances. Cutter interference analysis algorithm checks for the self intersection of an offset surface and determines the self-intersection curve. The tool path is then planned over the cutter contact (CC) surface after removing the CC data that lies inside the self-intersection curve. Finally, the effectiveness of these algorithms is demonstrated by implementing them in CAD/CAM system.  相似文献   

7.
Incremental sheet forming is an emerging process to manufacture sheet metal parts that is well adapted for small batch production or prototypes. The adjustment time is short, as it is sufficient to modify the tool motions to optimize the manufacturing process. Tool path generation therefore becomes a key topic linked to incremental sheet forming, and process characteristics ask for dedicated tool paths. Hence, this paper first discusses the impact of tool path types and other programming parameters on process implementation through an experimental campaign performed on a parallel kinematics machine tool. Then, a new approach to generate and control Intelligent CAM programmed tool paths is proposed. The major purpose of this innovative concept is to use process constraints for programming and controlling the tool path, which are adapted during the running of the CNC program according to real-time process data evaluation. Validation studies and an industrial implementation are finally presented to assess the efficiency of the proposed approach.  相似文献   

8.
Industrial robots are widely used in various processes of surface manufacturing, such as spray painting, spray forming, rapid tooling, spray coating, and polishing. Robot programming for these applications is still time consuming and costly. Typical teaching methods are not cost effective and efficient. There are many off-line programming methods developed to reduce the robot programming effort. However, these methods suffer many practical issues, such as cable/hose tangling, robot configuration, collision, and reachability. To solve these problems, this paper discusses a new method to generate robot programs. Since industrial robots have been used in production for decades, there are many robot programs for different parts generated by the robot programmers. These robot programs, which contain not only the robot paths, but also the programmers' knowledge and process parameters, can be transformed to generate new robot programs for similar parts. In this paper, a transformative robot program generation method is developed based on the existing ones in the database. Experiments were performed to validate the developed methodology. The results are very promising in reducing the programming efforts in surface manufacturing.  相似文献   

9.
随着汽车制造水平的不断进步,汽车覆盖件的成形质量已经越来越被汽车制造商所重视。表面缺陷是汽车覆盖件冲压成形过程中常见的缺陷之一,消除该缺陷传统的办法主要依靠经验,在制造过程需要反复修模,导致产品制造成本昂贵。本文简述了汽车外覆件件产生表面缺陷的原因及其基于数值模拟技术的仿真机理。最后,应用JSTAMP/NV软件提供的解决方案对某汽车门外板进行油石仿真分析,并将该仿真结果与试模结果进行比较,结果表明仿真结果与试模结果吻合良好。  相似文献   

10.
This paper presents a new approach for the determination of efficient tool paths in the machining of sculptured surfaces using 3-axis ball-end milling. The objective is to keep the scallop height constant across the machined surface such that redundant tool paths are minimized. Unlike most previous studies on constant scallop-height machining, the present work determines the tool paths without resorting to the approximated 2D representations of the 3D cutting geometry. Two offset surfaces of the design surface, the scallop surface and the tool center surface, are employed to successively establish scallop curves on the scallop surface and cutter location tool paths for the design surface. The effectiveness of the present approach is demonstrated through the machining of a typical sculptured surface. The results indicate that constant scallop-height machining achieves the specified machining accuracy with fewer and shorter tool paths than the existing tool path generation approaches.  相似文献   

11.
Geometrically, a tool path can be generated by successively offsetting its adjacent path on the surface with a given path interval, which preferably starts from one of the surface boundaries or a primary curve. The key issues involved in offset path planning are the generation of raw offset paths and the elimination of the self-intersection of raw offset paths. Most researches available in this area are focused on how to generate the raw offset paths, however, the latter, especially how to eliminate the self-intersection of the offset paths on mesh surfaces, has not been sufficiently addressed. In this paper, a mapping-based approach to eliminating the self-intersection of offset paths is proposed for the CNC machining of mesh surfaces. The method first flattens the mesh surface onto a predefined plane by using a mesh mapping technique, and then taking the mapping as a guide, the offset paths are also naturally mapped onto the plane, from which those invalid self-intersection loops can be effectively identified and eliminated. To handle the issue of self-intersection for all types of offset path, a notion of local loop is introduced to detect and eliminate the invalid self-intersection loops. After that the planar paths are inversely mapped into the physical space and the final tool paths used for the machining of mesh surface are obtained. Meanwhile, in order to improve the kinematic and dynamic performance of the machine tool when machining along the generated offset paths, a method for rounding the sharp corners of tool paths, which result from the process of eliminating the self-intersection of raw offset paths, is also preliminarily investigated. Finally, the proposed method is validated by the results of simulations and machining experiments.  相似文献   

12.
Establishing manufacturability design criteria for multidimensional complex parts can significantly reduce the production cost, shorten the manufacturing cycle, and improve the production quality of directed energy deposition. Therefore, there is an urgent need to establish a high-performance manufacturing design strategy for complex parts. Proposed here is a skeleton contour partitioning hybrid path-planning method that takes full advantage of the excellent geometric reducibility of the contour offset method and the outstanding flexibility of the zigzag path method, eliminating the influences of sharp corners and degradation on forming quality in the contour offset method. First, reference contours are obtained by subjecting the original contours to an inward–outward twice-offset process; incompletely filled regions are obtained by Boolean operations on the original and reference contours, and these regions are the ones to be optimized. Second, the optimized regions are merged into skeleton fill regions, and the fill paths are generated by a polygon trapezoidal partitioning recombination algorithm and an algorithm for generating optimal zigzag paths. Finally, the contour offset paths are split and regrouped based on the skeleton regions and are connected into a continuous forming path for each subregion, then all the forming paths are converted into robot printing tool paths from the skeleton-region filling paths to the contour-offset ones. The actual forming results for several parts with different geometric features are verified and compared with those of the traditional path-planning method, and it is concluded that the proposed method converges rapidly to the details of complex components and is highly feasible and applicable.  相似文献   

13.
The aim of tool path planning is to maximize the efficiency against some given precision criteria. In practice, scallop height should be kept constant to avoid unnecessary cutting, while the tool path should be smooth enough to maintain a high feed rate. However, iso-scallop and smoothness often conflict with each other. Existing methods smooth iso-scallop paths one-by-one, which make the final tool path far from being globally optimal. This paper proposes a new framework for tool path optimization. It views a family of iso-level curves of a scalar function defined over the surface as tool path so that desired tool path can be generated by finding the function that minimizes certain energy functional and different objectives can be considered simultaneously. We use the framework to plan globally optimal tool path with respect to iso-scallop and smoothness. The energy functionals for planning iso-scallop, smoothness, and optimal tool path are respectively derived, and the path topology is studied too. Experimental results are given to show effectiveness of the proposed methods.  相似文献   

14.
基于MRP汽车零部件生产计划系统研究与实现   总被引:3,自引:0,他引:3  
为了提高汽车零部件生产效率,确保按时完成客户订单,将物料需求计划(MRP)技术应用于汽车零部件生产计划系统中.首先给出了汽车零部件行业的供应链结构,提出了基于MRP的对产品进行分组并对产品结构进行层次化分解的汽车零部件生产计划模式.在此基础上,详细介绍了利用客户订单、产品结构信息、工作日历以及库存信息等来生成零部件生产计划和所需物料的采购计划的实现过程,并对实例进行了分析.该系统已经应用于汽车零部件生产企业中.  相似文献   

15.
Graphics-assisted Rolling Ball Method for 5-axis surface machining   总被引:3,自引:0,他引:3  
In this paper, a graphics hardware-assisted approach to 5-axis surface machining is presented that builds upon a tool positioning strategy named the Rolling Ball Method presented in an earlier paper by the present authors [Comput. Aided Des. 35 (2003) 347]. The depth buffer of the computer's graphics card is used to compute the data needed for the Rolling Ball Method, which generates gouge-free 5-axis curvature-matched tool positions. With this approach, the tool path for a workpiece can be computed with triangulated data instead of parametric surface equations. It also permits the generation of tool paths for multiple surface patch workpieces that have only positional continuity. The method is easy to implement and it is robust since every tool position is computed with the same algorithm regardless of the type of surface. For illustration, tool paths were generated for a workpiece with two bi-cubic surface patches, connected with only position continuity. Simulations for gouge-checking and machining tests were performed. Workpiece cusp heights were measured using a coordinate measuring machine. The maximum undercutting measured in the machining examples was 0.07 and 0.05 mm, which is within the expected NC machine accuracy and measuring capabilities for surfaces.  相似文献   

16.
The automation of mould design and manufacturing using computer-aided design and computer-aided manufacturing (CAD/CAM) draws the attention of many researchers. However, little attention is given to the automation of draft angles addition process. Draft angle is an important feature that facilitates the ejection of moulded parts. Existing algorithms for draft angles addition are still having limitations, especially for geometry with blending surfaces. A new approach for draft angles addition is introduced. It reduces the workload of users by automatically producing inclination on surfaces that require draft angles.  相似文献   

17.
We study the difficult problem of deciding if parts of a freeform surface can be generated, or approximately generated, by the motion of a planar profile through space. While this task is basic for understanding the geometry of shapes as well as highly relevant for manufacturing and building construction, previous approaches were confined to special cases like kinematic surfaces or “moulding” surfaces. The general case remained unsolved so far. We approach this problem by a combination of local and global methods: curve analysis with regard to “movability”, curve comparison by common substring search in curvature plots, an exhaustive search through all planar cuts enhanced by quick rejection procedures, the ordering of candidate profiles and finally, global optimization. The main applications of our method are digital reconstruction of CAD models exhibiting sweep patches, and aiding in manufacturing freeform surfaces by pointing out those parts which can be approximated by sweeps.  相似文献   

18.
Polynomial surfaces interpolating arbitrary triangulations   总被引:2,自引:0,他引:2  
Triangular Bezier patches are an important tool for defining smooth surfaces over arbitrary triangular meshes. The previously introduced 4-split method interpolates the vertices of a 2-manifold triangle mesh by a set of tangent plane continuous triangular Bezier patches of degree five. The resulting surface has an explicit closed form representation and is defined locally. In this paper, we introduce a new method for visually smooth interpolation of arbitrary triangle meshes based on a regular 4-split of the domain triangles. Ensuring tangent plane continuity of the surface is not enough for producing an overall fair shape. Interpolation of irregular control-polygons, be that in 1D or in 2D, often yields unwanted undulations. Note that this undulation problem is not particular to parametric interpolation, but also occurs with interpolatory subdivision surfaces. Our new method avoids unwanted undulations by relaxing the constraint of the first derivatives at the input mesh vertices: The tangent directions of the boundary curves at the mesh vertices are now completely free. Irregular triangulations can be handled much better in the sense that unwanted undulations due to flat triangles in the mesh are now avoided.  相似文献   

19.
Presented in this paper is a tool path generation method for multi-axis machining of free-form surfaces using Bézier curves and surfaces. The tool path generation includes two core steps. First is the forward-step function that determines the maximum distance, called forward step, between two cutter contact (CC) points with a given tolerance. The second component is the side step function which determines the maximum distance, called side step, between two adjacent tool paths with a given scallop height. Using the Bézier curves and surfaces, we generate cutter contact (CC) points for free-form surfaces and cutter location (CL) data files for post processing. Several parts are machined using a multi-axis milling machine. As part of the validation process, the tool paths generated from Bézier curves and surfaces are analyzed to compare the machined part and the desired part.  相似文献   

20.
数控技术在现代制造工业中被广泛使用,相关研究一直为学界和业界共同关注。数控技术的传 统流程主要包含刀具路径规划和进给速度插补。为实现高速高精加工,人们通常将路径规划与速度插补中的若 干问题转换成数理优化模型,针对工程应用问题的复杂性,采用分步迭代优化的思路进行求解,但所得的结果 往往只是局部最优解。其次,路径规划与速度插补都是为了加工一个工件曲面,分两步进行处理虽然简化了计 算,但也导致不能进行整体优化。因此,为了更好地开展路径规划与速度插补一体化设计与全局最优求解的研 究,系统性地了解并学习已有的代表性工作是十分有必要的。所以将逐次介绍数控加工中刀具路径规划与速度 插补的相关方法与技术进展,包括基于端铣的加工路径规划;刀轴方向优化;G 代码加工以及拐角过渡;参数 曲线路径的进给速度规划等国内外相关研究以及最新提出的一些新型加工优化方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号