首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We show that the promise problem of distinguishing n-bit strings of relative Hamming weight \({1/2 + \Omega(1/{\rm lg}^{d-1} n)}\) from strings of weight \({1/2 - \Omega(1/{\rm \lg}^{d - 1} n)}\) can be solved by explicit, randomized (unbounded fan-in) poly(n)-size depth-d circuits with error \({\leq 1/3}\) , but cannot be solved by deterministic poly(n)-size depth-(d+1) circuits, for every \({d \geq 2}\) ; and the depth of both is tight. Our bounds match Ajtai’s simulation of randomized depth-d circuits by deterministic depth-(d + 2) circuits (Ann. Pure Appl. Logic; ’83) and provide an example where randomization buys resources. To rule out deterministic circuits, we combine Håstad’s switching lemma with an earlier depth-3 lower bound by the author (Computational Complexity 2009). To exhibit randomized circuits, we combine recent analyses by Amano (ICALP ’09) and Brody and Verbin (FOCS ’10) with derandomization. To make these circuits explicit, we construct a new, simple pseudorandom generator that fools tests \({A_1 \times A_2 \times \cdots \times A_{{\rm lg}{n}}}\) for \({A_i \subseteq [n], |A_{i}| = n/2}\) with error 1/n and seed length O(lg n), improving on the seed length \({\Omega({\rm lg}\, n\, {\rm lg}\, {\rm lg}\, n)}\) of previous constructions.  相似文献   

2.
We present a system of relational syllogistic, based on classical propositional logic, having primitives of the following form: $$\begin{array}{ll}\mathbf{Some}\, a \,{\rm are} \,R-{\rm related}\, {\rm to}\, \mathbf{some} \,b;\\ \mathbf{Some}\, a \,{\rm are}\,R-{\rm related}\, {\rm to}\, \mathbf{all}\, b;\\ \mathbf{All}\, a\, {\rm are}\,R-{\rm related}\, {\rm to}\, \mathbf{some}\, b;\\ \mathbf{All}\, a\, {\rm are}\,R-{\rm related}\, {\rm to}\, \mathbf{all} \,b.\end{array}$$ Such primitives formalize sentences from natural language like ‘All students read some textbooks’. Here a, b denote arbitrary sets (of objects), and R denotes an arbitrary binary relation between objects. The language of the logic contains only variables denoting sets, determining the class of set terms, and variables denoting binary relations between objects, determining the class of relational terms. Both classes of terms are closed under the standard Boolean operations. The set of relational terms is also closed under taking the converse of a relation. The results of the paper are the completeness theorem with respect to the intended semantics and the computational complexity of the satisfiability problem.  相似文献   

3.
Recently, we derived some new numerical quadrature formulas of trapezoidal rule type for the integrals \(I^{(1)}[g]=\int ^b_a \frac{g(x)}{x-t}\,dx\) and \(I^{(2)}[g]=\int ^b_a \frac{g(x)}{(x-t)^2}\,dx\) . These integrals are not defined in the regular sense; \(I^{(1)}[g]\) is defined in the sense of Cauchy Principal Value while \(I^{(2)}[g]\) is defined in the sense of Hadamard Finite Part. With \(h=(b-a)/n, \,n=1,2,\ldots \) , and \(t=a+kh\) for some \(k\in \{1,\ldots ,n-1\}, \,t\) being fixed, the numerical quadrature formulas \({Q}^{(1)}_n[g]\) for \(I^{(1)}[g]\) and \(Q^{(2)}_n[g]\) for \(I^{(2)}[g]\) are $$\begin{aligned} {Q}^{(1)}_n[g]=h\sum ^n_{j=1}f(a+jh-h/2),\quad f(x)=\frac{g(x)}{x-t}, \end{aligned}$$ and $$\begin{aligned} Q^{(2)}_n[g]=h\sum ^n_{j=1}f(a+jh-h/2)-\pi ^2g(t)h^{-1},\quad f(x)=\frac{g(x)}{(x-t)^2}. \end{aligned}$$ We provided a complete analysis of the errors in these formulas under the assumption that \(g\in C^\infty [a,b]\) . We actually show that $$\begin{aligned} I^{(k)}[g]-{Q}^{(k)}_n[g]\sim \sum ^\infty _{i=1} c^{(k)}_ih^{2i}\quad \text {as}\,n \rightarrow \infty , \end{aligned}$$ the constants \(c^{(k)}_i\) being independent of \(h\) . In this work, we apply the Richardson extrapolation to \({Q}^{(k)}_n[g]\) to obtain approximations of very high accuracy to \(I^{(k)}[g]\) . We also give a thorough analysis of convergence and numerical stability (in finite-precision arithmetic) for them. In our study of stability, we show that errors committed when computing the function \(g(x)\) , which form the main source of errors in the rest of the computation, propagate in a relatively mild fashion into the extrapolation table, and we quantify their rate of propagation. We confirm our conclusions via numerical examples.  相似文献   

4.
We relate the exponential complexities 2 s(k)n of $\textsc {$k$-sat}$ and the exponential complexity $2^{s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))n}$ of $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ (the problem of evaluating quantified formulas of the form $\forall\vec{x} \exists\vec{y} \textsc {F}(\vec {x},\vec{y})$ where F is a 3-cnf in $\vec{x}$ variables and $\vec{y}$ variables) and show that s(∞) (the limit of s(k) as k→∞) is at most $s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))$ . Therefore, if we assume the Strong Exponential-Time Hypothesis, then there is no algorithm for $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ running in time 2 cn with c<1. On the other hand, a nontrivial exponential-time algorithm for $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ would provide a $\textsc {$k$-sat}$ solver with better exponent than all current algorithms for sufficiently large k. We also show several syntactic restrictions of the evaluation problem $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ have nontrivial algorithms, and provide strong evidence that the hardest cases of $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ must have a mixture of clauses of two types: one universally quantified literal and two existentially quantified literals, or only existentially quantified literals. Moreover, the hardest cases must have at least n?o(n) universally quantified variables, and hence only o(n) existentially quantified variables. Our proofs involve the construction of efficient minimally unsatisfiable $\textsc {$k$-cnf}$ s and the application of the Sparsification lemma.  相似文献   

5.
Gábor Wiener 《Algorithmica》2013,67(3):315-323
A set system $\mathcal{H} \subseteq2^{[m]}$ is said to be separating if for every pair of distinct elements x,y∈[m] there exists a set $H\in\mathcal{H}$ such that H contains exactly one of them. The search complexity of a separating system $\mathcal{H} \subseteq 2^{[m]}$ is the minimum number of questions of type “xH?” (where $H \in\mathcal{H}$ ) needed in the worst case to determine a hidden element x∈[m]. If we receive the answer before asking a new question then we speak of the adaptive complexity, denoted by $\mathrm{c} (\mathcal{H})$ ; if the questions are all fixed beforehand then we speak of the non-adaptive complexity, denoted by $\mathrm{c}_{na} (\mathcal{H})$ . If we are allowed to ask the questions in at most k rounds then we speak of the k-round complexity of $\mathcal{H}$ , denoted by $\mathrm{c}_{k} (\mathcal{H})$ . It is clear that $|\mathcal{H}| \geq\mathrm{c}_{na} (\mathcal{H}) = \mathrm{c}_{1} (\mathcal{H}) \geq\mathrm{c}_{2} (\mathcal{H}) \geq\cdots\geq\mathrm{c}_{m} (\mathcal{H}) = \mathrm{c} (\mathcal{H})$ . A group of problems raised by G.O.H. Katona is to characterize those separating systems for which some of these inequalities are tight. In this paper we are discussing set systems $\mathcal{H}$ with the property $|\mathcal{H}| = \mathrm{c}_{k} (\mathcal{H}) $ for any k≥3. We give a necessary condition for this property by proving a theorem about traces of hypergraphs which also has its own interest.  相似文献   

6.
The discrete logarithm problem modulo a composite??abbreviate it as DLPC??is the following: given a (possibly) composite integer n??? 1 and elements ${a, b \in \mathbb{Z}_n^*}$ , determine an ${x \in \mathbb{N}}$ satisfying a x ?=?b if one exists. The question whether integer factoring can be reduced in deterministic polynomial time to the DLPC remains open. In this paper we consider the problem ${{\rm DLPC}_\varepsilon}$ obtained by adding in the DLPC the constraint ${x\le (1-\varepsilon)n}$ , where ${\varepsilon}$ is an arbitrary fixed number, ${0 < \varepsilon\le\frac{1}{2}}$ . We prove that factoring n reduces in deterministic subexponential time to the ${{\rm DLPC}_\varepsilon}$ with ${O_\varepsilon((\ln n)^2)}$ queries for moduli less or equal to n.  相似文献   

7.
Dr. J. Rokne 《Computing》1979,21(2):159-170
In computing the range of values of a polynomial over an intervala≤x≤b one may use polynomials of the form $$\left( {\begin{array}{*{20}c} k \\ j \\ \end{array} } \right)\left( {x - a} \right)^j \left( {b - x} \right)^{k - j} $$ called Bernstein polynomials of the degreek. An arbitrary polynomial of degreen may be written as a linear combination of Bernstein polynomials of degreek≥n. The coefficients of this linear combination furnish an upper/lower bound for the range of the polynomial. In this paper a finite differencelike scheme is investigated for this computation. The scheme is then generalized to interval polynomials.  相似文献   

8.
In this paper we extend the study of algorithms for monitoring distributed data streams from whole data streams to a time-based sliding window. The concern is how to minimize the communication between individual streams and the root, while allowing the root, at any time, to report the global statistics of all streams within a given error bound. This paper presents communication-efficient algorithms for three classical statistics, namely, basic counting, frequent items and quantiles. The worst-case communication cost over a window is $O(\frac{k}{\varepsilon} \log\frac{\varepsilon N}{k})$ bits for basic counting, $O(\frac{k}{\varepsilon} \log\frac{N}{k})$ words for frequent items and $O(\frac{k}{\varepsilon^{2}} \log\frac{N}{k})$ words for quantiles, where k is the number of distributed data streams, N is the total number of items in the streams that arrive or expire in the window, and ε<1 is the given error bound. The performance of our algorithms matches and nearly matches the corresponding lower bounds. We also show how to generalize these results to streams with out-of-order data.  相似文献   

9.
In this paper we answer the question of when circulant quantum spin networks with nearest-neighbor couplings can give perfect state transfer. The network is described by a circulant graph G, which is characterized by its circulant adjacency matrix A. Formally, we say that there exists a perfect state transfer (PST) between vertices ${a,b\in V(G)}$ if |F(τ) ab | = 1, for some positive real number τ, where F(t) = exp(i At). Saxena et al. (Int J Quantum Inf 5:417–430, 2007) proved that |F(τ) aa | = 1 for some ${a\in V(G)}$ and ${\tau\in \mathbb {R}^+}$ if and only if all eigenvalues of G are integer (that is, the graph is integral). The integral circulant graph ICG n (D) has the vertex set Z n = {0, 1, 2, . . . , n ? 1} and vertices a and b are adjacent if ${\gcd(a-b,n)\in D}$ , where ${D \subseteq \{d : d \mid n, \ 1 \leq d < n\}}$ . These graphs are highly symmetric and have important applications in chemical graph theory. We show that ICG n (D) has PST if and only if ${n\in 4\mathbb {N}}$ and ${D=\widetilde{D_3} \cup D_2\cup 2D_2\cup 4D_2\cup \{n/2^a\}}$ , where ${\widetilde{D_3}=\{d\in D\ |\ n/d\in 8\mathbb {N}\}, D_2= \{d\in D\ |\ n/d\in 8\mathbb {N}+4\}{\setminus}\{n/4\}}$ and ${a\in\{1,2\}}$ . We have thus answered the question of complete characterization of perfect state transfer in integral circulant graphs raised in Angeles-Canul et al. (Quantum Inf Comput 10(3&4):0325–0342, 2010). Furthermore, we also calculate perfect quantum communication distance (distance between vertices where PST occurs) and describe the spectra of integral circulant graphs having PST. We conclude by giving a closed form expression calculating the number of integral circulant graphs of a given order having PST.  相似文献   

10.
We consider the problem of leader election (LE) in single-hop radio networks with synchronized time slots for transmitting and receiving messages. We assume that the actual number n of processes is unknown, while the size u of the ID space is known, but is possibly much larger. We consider two types of collision detection: strong (SCD), whereby all processes detect collisions, and weak (WCD), whereby only non-transmitting processes detect collisions. We introduce loneliness detection (LD) as a key subproblem for solving LE in WCD systems. LD informs all processes whether the system contains exactly one process or more than one. We show that LD captures the difference in power between SCD and WCD, by providing an implementation of SCD over WCD and LD. We present two algorithms that solve deterministic and probabilistic LD in WCD systems with time costs of ${\mathcal{O}(\log \frac{u}{n})}$ and ${\mathcal{O}(\min( \log \frac{u}{n}, \frac{\log (1/\epsilon)}{n}))}$ , respectively, where ${\epsilon}$ is the error probability. We also provide matching lower bounds. Assuming LD is solved, we show that SCD systems can be emulated in WCD systems with factor-2 overhead in time. We present two algorithms that solve deterministic and probabilistic LE in SCD systems with time costs of ${\mathcal{O}(\log u)}$ and ${\mathcal{O}(\min ( \log u, \log \log n + \log (\frac{1}{\epsilon})))}$ , respectively, where ${\epsilon}$ is the error probability. We provide matching lower bounds.  相似文献   

11.
A C-coloured graph is a graph, that is possibly directed, where the edges are coloured with colours from the set C. Clique-width is a complexity measure for C-coloured graphs, for finite sets C. Rank-width is an equivalent complexity measure for undirected graphs and has good algorithmic and structural properties. It is in particular related to the vertex-minor relation. We discuss some possible extensions of the notion of rank-width to C-coloured graphs. There is not a unique natural notion of rank-width for C-coloured graphs. We define two notions of rank-width for them, both based on a coding of C-coloured graphs by ${\mathbb{F}}^{*}$ -graphs— $\mathbb {F}$ -coloured graphs where each edge has exactly one colour from $\mathbb{F}\setminus \{0\},\ \mathbb{F}$ a field—and named respectively $\mathbb{F}$ -rank-width and $\mathbb {F}$ -bi-rank-width. The two notions are equivalent to clique-width. We then present a notion of vertex-minor for $\mathbb{F}^{*}$ -graphs and prove that $\mathbb{F}^{*}$ -graphs of bounded $\mathbb{F}$ -rank-width are characterised by a list of $\mathbb{F}^{*}$ -graphs to exclude as vertex-minors (this list is finite if $\mathbb{F}$ is finite). An algorithm that decides in time O(n 3) whether an $\mathbb{F}^{*}$ -graph with n vertices has $\mathbb{F}$ -rank-width (resp. $\mathbb{F}$ -bi-rank-width) at most k, for fixed k and fixed finite field $\mathbb{F}$ , is also given. Graph operations to check MSOL-definable properties on $\mathbb{F}^{*}$ -graphs of bounded $\mathbb{F}$ -rank-width (resp. $\mathbb{F}$ -bi-rank-width) are presented. A specialisation of all these notions to graphs without edge colours is presented, which shows that our results generalise the ones in undirected graphs.  相似文献   

12.
For a finite alphabet ∑ we define a binary relation on \(2^{\Sigma *} \times 2^{2^{\Sigma ^* } } \) , called balanced immunity. A setB ? ∑* is said to be balancedC-immune (with respect to a classC ? 2Σ* of sets) iff, for all infiniteL εC, $$\mathop {\lim }\limits_{n \to \infty } \left| {L^{ \leqslant n} \cap B} \right|/\left| {L^{ \leqslant n} } \right| = \tfrac{1}{2}$$ Balanced immunity implies bi-immunity and in natural cases randomness. We give a general method to find a balanced immune set'B for any countable classC and prove that, fors(n) =o(t(n)) andt(n) >n, there is aB εSPACE(t(n)), which is balanced immune forSPACE(s(n)), both in the deterministic and nondeterministic case.  相似文献   

13.
Current mobile agent algorithms for mapping faults in computer networks assume that the network is static. However, for large classes of highly dynamic networks (e.g., wireless mobile ad hoc networks, sensor networks, vehicular networks), the topology changes as a function of time. These networks, called delay-tolerant, challenged, opportunistic, etc., have never been investigated with regard to locating faults. We consider a subclass of these networks modeled on an urban subway system. We examine the problem of creating a map of such a subway. More precisely, we study the problem of a team of asynchronous computational entities (the mapping agents) determining the location of black holes in a highly dynamic graph, whose edges are defined by the asynchronous movements of mobile entities (the subway carriers). We determine necessary conditions for the problem to be solvable. We then present and analyze a solution protocol; we show that our algorithm solves the fault mapping problem in subway networks with the minimum number of agents possible, k=??+1, where ?? is the number of carrier stops at black holes. The number of carrier moves between stations required by the algorithm in the worst case is $O(k \cdot n_{C}^{2}\cdot l_{R} + n_{C}\cdot l_{R}^{2})$ , where n C is the number of subway trains, and l R is the length of the subway route with the most stops. We establish lower bounds showing that this bound is tight. Thus, our protocol is both agent-optimal and move-optimal.  相似文献   

14.
Given a graph with n vertices, k terminals and positive integer weights not larger than c, we compute a minimum Steiner Tree in $\mathcal{O}^{\star}(2^{k}c)$ time and $\mathcal{O}^{\star}(c)$ space, where the $\mathcal{O}^{\star}$ notation omits terms bounded by a polynomial in the input-size. We obtain the result by defining a generalization of walks, called branching walks, and combining it with the Inclusion-Exclusion technique. Using this combination we also give $\mathcal{O}^{\star}(2^{n})$ -time polynomial space algorithms for Degree Constrained Spanning Tree, Maximum Internal Spanning Tree and #Spanning Forest with a given number of components. Furthermore, using related techniques, we also present new polynomial space algorithms for computing the Cover Polynomial of a graph, Convex Tree Coloring and counting the number of perfect matchings of a graph.  相似文献   

15.
In the first part of this work, we derive compact numerical quadrature formulas for finite-range integrals $I[f]=\int^{b}_{a}f(x)\,dx$ , where f(x)=g(x)|x?t| ?? , ?? being real. Depending on the value of ??, these integrals are defined either in the regular sense or in the sense of Hadamard finite part. Assuming that g??C ??[a,b], or g??C ??(a,b) but can have arbitrary algebraic singularities at x=a and/or x=b, and letting h=(b?a)/n, n an integer, we derive asymptotic expansions for ${T}^{*}_{n}[f]=h\sum_{1\leq j\leq n-1,\ x_{j}\neq t}f(x_{j})$ , where x j =a+jh and t??{x 1,??,x n?1}. These asymptotic expansions are based on some recent generalizations of the Euler?CMaclaurin expansion due to the author (A.?Sidi, Euler?CMaclaurin expansions for integrals with arbitrary algebraic endpoint singularities, in Math. Comput., 2012), and are used to construct our quadrature formulas, whose accuracies are then increased at will by applying to them the Richardson extrapolation process. We pay particular attention to the case in which ??=?2 and f(x) is T-periodic with T=b?a and $f\in C^{\infty}(-\infty,\infty)\setminus\{t+kT\}^{\infty}_{k=-\infty}$ , which arises in the context of periodic hypersingular integral equations. For this case, we propose the remarkably simple and compact quadrature formula $\widehat{Q}_{n}[f]=h\sum^{n}_{j=1}f(t+jh-h/2)-\pi^{2} g(t)h^{-1}$ , and show that $\widehat{Q}_{n}[f]-I[f]=O(h^{\mu})$ as h??0 ???>0, and that it is exact for a class of singular integrals involving trigonometric polynomials of degree at most n. We show how $\widehat{Q}_{n}[f]$ can be used for solving hypersingular integral equations in an efficient manner. In the second part of this work, we derive the Euler?CMaclaurin expansion for integrals $I[f]=\int^{b}_{a} f(x)dx$ , where f(x)=g(x)(x?t) ?? , with g(x) as before and ??=?1,?3,?5,??, from which suitable quadrature formulas can be obtained. We revisit the case of ??=?1, for which the known quadrature formula $\widetilde{Q}_{n}[f]=h\sum^{n}_{j=1}f(t+jh-h/2)$ satisfies $\widetilde{Q}_{n}[f]-I[f]=O(h^{\mu})$ as h??0 ???>0, when f(x) is T-periodic with T=b?a and $f\in C^{\infty}(-\infty,\infty)\setminus\{t+kT\}^{\infty}_{k=-\infty}$ . We show that this formula too is exact for a class of singular integrals involving trigonometric polynomials of degree at most n?1. We provide numerical examples involving periodic integrands that confirm the theoretical results.  相似文献   

16.
In Paturi, Pudlák, Saks, and Zane (Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS1998), pp. 628–637, 1998) proposed a simple randomized algorithm for finding a satisfying assignment of a k-CNF formula. The main lemma of the paper is as follows: Given a satisfiable k-CNF formula that has a d-isolated satisfying assignment z, the randomized algorithm finds z with probability at least $2^{-(1-\mu_{k}/(k-1)+\epsilon_{k}(d))n}$ , where $\mu_{k}/(k-1)=\sum_{i=1}^{\infty}1/(i((k-1)i+1))$ , and ? k (d)=o d (1). They estimated the lower bound of the probability in an analytical way, and used some asymptotics. In this paper, we analyze the same randomized algorithm, and estimate the probability in a combinatorial way. The lower bound we obtain is a little simpler: $2^{-(1-\mu_{k}(d)/(k-1))n}$ , where $\mu_{k}(d)/(k-1)=\sum_{i=1}^{d}1/(i((k-1)i+1))$ . This value is a little bit larger (i.e., better) than that of Paturi et al. (Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS1998), pp. 628–637, 1998) although the two values are asymptotically equal when d=ω(1).  相似文献   

17.
In this paper, We propose a simple and practical method (that works only for triangular fuzzy numbers) to solve an arbitrary fully fuzzy linear system (FFLS) in the form $\widetilde{A}\otimes \widetilde{x}=\widetilde{b},$ where $\widetilde{A}_{n \times n}$ is a fuzzy matrix, $\widetilde{x}$ and $\widetilde{b}$ are n × 1 fuzzy vectors. The idea of the presented method is constructed based on the extending 0-cut and 1-cut solution of original fully fuzzy linear systems (FFLS). We also define a fuzzy solution of FFLS and establish the necessary and sufficient conditions for the uniqueness of a fuzzy solution.  相似文献   

18.
F. Costabile 《Calcolo》1974,11(2):191-200
For the Tschebyscheff quadrature formula: $$\int\limits_{ - 1}^1 {\left( {1 - x^2 } \right)^{\lambda - 1/2} f(x) dx} = K_n \sum\limits_{k = 1}^n {f(x_{n,k} )} + R_n (f), \lambda > 0$$ it is shown that the degre,N, of exactness is bounded by: $$N \leqslant C(\lambda )n^{1/(2\lambda + 1)} $$ whereC(λ) is a convenient function of λ. For λ=1 the complete solution of Tschebyscheff's problem is given.  相似文献   

19.
H. H. Gonska  J. Meier 《Calcolo》1984,21(4):317-335
In 1972 D. D. Stancu introduced a generalization \(L_{mp} ^{< \alpha \beta \gamma > }\) of the classical Bernstein operators given by the formula $$L_{mp}< \alpha \beta \gamma > (f,x) = \sum\limits_{k = 0}^{m + p} {\left( {\begin{array}{*{20}c} {m + p} \\ k \\ \end{array} } \right)} \frac{{x^{(k, - \alpha )} \cdot (1 - x)^{(m + p - k, - \alpha )} }}{{1^{(m + p, - \alpha )} }}f\left( {\frac{{k + \beta }}{{m + \gamma }}} \right)$$ . Special cases of these operators had been investigated before by quite a number of authors and have been under investigation since then. The aim of the present paper is to prove general results for all positiveL mp <αβγ> 's as far as direct theorems involving different kinds of moduli of continuity are concerned. When applied to special cases considered previously, all our corollaries of the general theorems will be as good as or yield improvements of the known results. All estimates involving the second order modulus of continuity are new.  相似文献   

20.
Dr. M. Sieveking 《Computing》1972,10(1-2):153-156
An algorithm is given to compute a solution (b 0, ...,b n) of $$\sum\limits_0^n {a_i t^i } \sum\limits_0^n {b_i t^i } \equiv \sum\limits_0^n {c_i t^i } (t^{n + 1} )$$ froma 0, ..., an, c0, ..., cn. It needs less than 7n multiplications, where multiplications with a skalar from an infinite subfield are not counted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号