首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 106 毫秒
1.
In this article, a circularly polarized coupled slot 1 × 4 stacked patch antenna array with enhanced bandwidth is proposed for S‐band applications. Initially, a patch antenna radiating at 2.79 GHz is designed and maximum energy from feedline to patch element is coupled using two rectangular slots. Whereas, a parallel feedline structure is designed to provide polarization flexibility by creating 0, 90 , and 180o phase differences. Then, a truncated patch element is vertically stacked in the design to achieve broader bandwidth of 600 MHz over frequency range from 2.4 to 3.0 GHz. Finally, a coupled slot 1 × 4 array stacked antenna array having feedline line structure to provide 90o phase difference for circular polarization is designed and fabricated for measurements. It is observed that the final design achieved target specification having impedance matching (|S11 | (dB) < ?10 dB over 2.4 to 3.0 GHz, broad band circular polarization, and 11.5 dBic total gain. Overall, a good agreement between simulated and measurement results is observed.  相似文献   

2.
A high‐isolation dual‐polarized quad‐patch antenna fed by stacked substrate integrated waveguide (SIW) that is suitable for millimeter‐wave band is proposed in this paper. The antenna consists of a quad‐patch radiator, a two‐layer SIW feeding structure and two feeding ports for horizontal and vertical polarization. The two‐layer stacked SIW feeding structure achieves the high isolation between the two feeding ports (|S21| ≤ ?45 dB). Based on the proposed element, a 1 × 4 antenna array with a simple series‐fed network is also designed and investigated. A prototype working at the frequency band from 38 to 40 GHz is fabricated and tested. The results indicate that the proposed antenna has good radiation performance at 38 GHz that covers future 5G applications.  相似文献   

3.
In this article, a novel compact triple‐band stacked monopole antenna for USB dongle applications is proposed. The antenna consists of an e‐shaped monopole connected directly to the feedline and a square patch‐shaped monopole at another layer connected to feedline by a metallic pin. The e‐shaped monopole is used to obtain WLAN band (2.4‐2.48 GHz) and WiMAX band (3.4‐3.69 GHz). On the other hand, square patch‐shaped monopole is introduced to get WLAN bands (5.15‐5.35 and 5.725‐5.825 GHz) and WiMAX band (5.25‐5.85 GHz). The antenna is compact with the dimension of 17 × 13 mm2.  相似文献   

4.
In this article, an offset fed printed dipole antenna 2‐element, 4‐element, and 8‐element arrays are developed and analyzed for millimeter wave applications. The 8‐element array antenna is of compact size with dimensions 43.6 × 25.1 × 0.25 mm3. It achieved a broad impedance bandwidth (S11 < ?10 dB) of 15.7 GHz from 24.7 to 40.4 GHz. The mutual coupling between array elements is less than ?35 dB in the operating band. The antenna achieved a gain of 12.62 to 13.1 dB. The 8‐element array antenna is fabricated on liquid crystal polymer material and tested. Impedance matching, far field radiation characteristics, co‐polarized and cross‐polarized patterns and group delay are analyzed in simulation and experimental measurement. The investigated results are in good agreement and hence, the developed array antenna is attractive for wideband millimeter wave applications.  相似文献   

5.
A multilayered circularly polarized (CP), dual‐band, stacked slit‐/slotted‐patch antenna with compact size and with compact rectifier is offered for RF energy harvesting systems. The compact dual‐band CP antenna size is able to achieve by stacking slotted‐circular‐patch (SCP) on the substrate above the tapered‐slit‐octagon patch (TSOP). Dual‐band CP radiation is realized by stacking the SCP on the TSOP and the microstrip feedline with metallic‐via to SCP. Eight‐tapered‐slit with length difference of 6.25% are embedded along the octagonal directions symmetrically on the TSOP from the patch's center and two unequal size circular slots are embedded in diagonal axis onto SCP to produce dual‐orthogonal modes with almost equal magnitude for CP waves. The designed antenna is realized measured gain of greater than 5.2 dBic across the band (0.908‐0.922 GHz) with maximum gain of 5.41 dBic at 0.918 GHz and gain of greater than 6.14 dBic across the band (2.35‐2.50 GHz) with maximum gain of 7.94 dBic at 2.485 GHz. An overall antenna volume is 0.36λ o × 0.36λ o × 0.026λ o (λ o is free space wavelength at 0.9 GHz). A compact composite right‐/left‐handed (CRLH) based rectifier with dual‐band at 0.9 and 2.45 GHz is designed, prototyped, and measured. The right‐handed (RH) part of the CRLH transmission line (TL) is formed by a microstrip line. The left‐handed (LH) part of the CRLH‐TL is formed by lumped components. The measured RF‐DC conversion efficiency is 43% at 0.9 GHz and 39% at 2.45 GHz with rectifier size of 0.18λ o × 0.075λ o × 0.0002λ o at 0.9 GHz.  相似文献   

6.
In this paper, the application of the L‐slotted mushroom electromagnetic bandgap (LMEBG) structure to patch antenna and antenna array is investigated. A coaxial fed patch antenna and antenna array are designed at 5.8 GHz, center frequency for ISM band (5.725‐5.875 GHz). Two layers of LMEBG are placed around the patch to achieve a gain enhancement of 1.9 dB. Measured results show a bandwidth enhancement of 300 MHz with an additional resonant frequency at 5.6 GHz with 4.5 dB of gain. A 5 × 2 array of LMEBG is used to achieve a 2 dB mutual coupling reduction and 2 dB gain enhancement for a two‐element H‐coupled patch antenna array.  相似文献   

7.
In this article, the intensive investigations are carried out on a low volume compact flexible antenna for wireless applications with a novel structure model. The proposed model has considered as an elliptical‐ring with split‐triangular patch (ERSTP) antenna with the coplanar waveguide feeding to achieve dual‐bands. The ERSTP antenna is designed with polyimide material having the volume (L a × W a × h) 99 mm3. The ERSTP antenna resonates with 2.60 GHz and 3.48 GHz frequencies with a reflection coefficient of ?21.92 dB and ?32.14 dB and a gain of 2.39 dBi and 1.75, dBi respectively. The impedance bandwidths are 100 MHz and 330 MHz observed at two frequency bands. The proposed ERSTP antenna has operated on mobile‐worldwide interoperability for microwave access (M‐WiMAX) and worldwide interoperability for microwave access (WiMAX) bands respectively. The simulated and measured results of ERSTP antenna are in good agreement.  相似文献   

8.
In this article, a 4 × 4 linear‐phased patch array antenna, consisting of four 1 × 4 patch subarrays and a true time‐delay multiline phase shifter, is proposed on a thin film liquid crystal polymer substrate at Ka‐band. The patch antenna is designed with a gain of 6 dBi at 35 GHz and a bandwidth of 23% centered at 35 GHz. To enhance the gain and symmetrize the beam patterns of the 4 × 4 array, a 1 × 4 patch subarray in the E‐plane was designed and characterized. The subarray produces an enhanced gain of 11 dBi and a wide beamwidth of ±38° in the H‐plane for beam steering. The proposed phase shifter comprises a 1 × 4 microstrip line power splitter and a piezoelectric transducer‐controlled phase perturber. A large phase variation of up to 370° and a low insertion loss of less than 2 dB were demonstrated for the phase shifter at Ka‐band. The integrated phased array attains a gain of 15.6 dBi, and a continuous true‐time delay beam steering of up to 33 ± 1° from 31 to 39 GHz. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:199–208, 2016.  相似文献   

9.
A planar broadband circularly polarized (CP) X‐band array antenna with low sidelobe and high aperture efficiency is presented for small satellite applications. The array design is composed of 4 × 4 broadband CP stacked patch elements, which are fed by a feeding network consisted of unequal series‐parallel power dividers to achieve the low sidelobe and high aperture efficiency. The final prototype with overall size of 100 mm × 100 mm × 3 mm (2.73λ0 × 2.73λ0 × 0.082λ0 at 8.2 GHz) was fabricated and measured. The antenna has a broadband characteristic with |S11| < ?10 dB bandwidth of 15.9% (7.52‐8.82 GHz) and 3‐dB axial ratio bandwidth of 11.95% (7.63‐8.60 GHz). Also, it achieves an excellent broadside CP radiation with a gain of 17.2‐20.03 dBic, a sidelobe level of <?20 dB, and aperture efficiency of 65% to 97.5%. With these features, the proposed antenna is a good candidate for high‐speed data downlink onboard small satellites (MiniSat, MicroSat, NanoSat, and CubeSat).  相似文献   

10.
A miniature two‐element MIMO multiband planar patch antenna with potential applications in the ISM bands is presented. The elements of the antenna have been designed using a novel hybrid fractal geometry based on an altered Dragon Curve and the Inverted Koch. Reduced antenna dimensions are obtained with acceptable performance even at lower frequency ranges. The antenna elements are placed adjacent to each other with a very small spacing of 0.004 λ0 (λ being the free space wavelength of 433 MHz), confining the antenna dimensions to 51 × 50 mm2. The antenna resonates at the 433 MHz (ISM), 2.4 GHz (ISM), 3.9 GHZ (Fixed Satellite), 4.7 GHz (UWB) and 5.8 GHz (ISM) frequency bands. The antenna exhibits |S11| ≤ ?10 dB, |S21| ≤ ?16 dB, an ECC ≤ 0.01 for all operating frequencies, with circular polarisation at the 2.4 GHz and 5.8 GHz bands and linear polarisation at the others. The simulated structure was fabricated and tested, with the simulated and measured results displaying acceptable agreement.  相似文献   

11.
This article reports a high gain millimeter‐wave substrate integrated waveguide (SIW) antenna using low cost printed circuit board technology. The half elliptic slots which can provide small shunt admittance, low cross polarization level and low mutual coupling are etched on the board surface of SIW as radiation slots for large array application. Design procedure for analyzing the characteristics of proposed radiation slot, the beam‐forming structure and the array antenna are presented. As examples, an 8 × 8 and a 32 × 32 SIW slot array antennas are designed and verified by experiments. Good agreements between simulation and measured results are achieved, which shows the 8 × 8 SIW slot array antenna has a gain of 20.8 dBi at 42.5 GHz, the maximum sidelobe level of 42.5 GHz E‐plane and H‐plane radiation patterns are 22.3 dB and 22.1 dB, respectively. The 32 × 32 SIW slot array antenna has a maximum measured gain of 30.05 dBi at 42.5 GHz. At 42.3 GHz, the measured antenna has a gain of 29.6 dBi and a maximum sidelobe level of 19.89 dB and 15.0 dB for the E‐plane and H‐plane radiation patterns. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:709–718, 2015.  相似文献   

12.
Wireless power transfer has been the field of research for many decades, and with technological advancement and increase in wireless mobile devices, the future of wireless power transfer technology is very promising. The major requirement of wireless power transfer is an efficient and compact antenna array with high gain and flawless scanning performance. In this article, a 4 × 8 element array is proposed with a gain of 18 dB and scanning capability of ±45° in azimuth and elevation plane at 5.8 GHz. The overall size of the array is 100 mm × 200 mm. The element separation in the array is only 0.48 λ. There was strong mutual coupling due to smaller separation, which has been minimized with the application of via‐fence around the antenna element. A dual feed circularly polarized annular slot‐ring antenna is proposed and analyzed with via‐fence to develop an array of 4 × 8 elements. The antenna array reflection coefficient obtained is less than 20 dB for different scan angles and the gain of the array obtained is also within 2 dB for ±45° scan angles.  相似文献   

13.
A novel square ring printed antenna has been suggested for dual‐band circular polarization (CP). The geometry contains a square patch and a square ring structure for dual‐band operation. Circular polarization is achieved using triangular cut at the boundary and right angle bend with inner perturbation. The suggested antenna is excited from the lower layer through electromagnetic (EM) coupling technique. The antenna shows good impedance bandwidths of 90 MHz (2.43‐2.52 GHz) and 800 MHz (5.7‐6.5 GHz, respectively. The antenna shows 3 dB axial ratio bandwidth of 20 MHz at lower band and 120 MHz at upper band with improved gain > 6 dBi. The simulated and measured results are well agreed with each other. The antenna is promising wideband operation at the upper band. This antenna was implemented on fiberglass reinforcement laminated Arlon substrate with dielectric constant (?r = 2.55), and the overall physical dimension of 30 × 30 × 3.048 mm3. The designed antenna can be extensibly applicable in WLAN/Wi‐MAX communication. The presented antenna is designed using hyperlynx IE3D and the simulated results are presented.  相似文献   

14.
In this letter, we present a circular polarization antenna array using the novel slot‐coupling feeding technique. This antenna includes eight elements which are installed in line, each array element is fed by means of two microstrip lines with equal amplitude and phase rotation of 90°. The feeding microstrip lines are coupled to a square patch through a square‐ring slot realized in the feeding network ground plane. With the presence of the slots, this antenna array is able to cover the range of frequency of 3 GHz to 4 GHz. The size of the proposed antenna array is 7λ × 1.8λ × 0.4λ. The measured gain is 15.2 dBi and the bandwidth of S11< ?10 dB is 1 GHz (3–4 GHz, 28%). The antenna array is suited for the WiMAX applications. With the use of slot‐coupling feeding technique, the measured bandwidth for axial ratio < 3 dB is about 24% in the WiMAX frequency band (3.3–3.8GHz). The measured HPBW of the yz planes is larger than 62°. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:567–574, 2016.  相似文献   

15.
In this paper, nested hexagonal ring‐shaped fractal antennas are designed and investigated which are different from each other in patch orientation. Initially, the multiband integrated wideband hexagonal nested ring antenna is designed (antenna‐I). To improve the multiband/wideband behavior, the patch orientation of antenna‐I is changed to ?60°/60° (antenna‐II), ?120°/120° (antenna‐III), and ?180°/180° (antenna‐IV). Antennas are designed on low cost FR‐4 glass epoxy substrate with relative permittivity of 4.4 and overall dimension 30 × 30 × 1.6 mm3. Comparison among antennas have been made and found that the antennas with negative orientation exhibit better results in terms of bandwidth, impedance matching, number of frequency bands, and gain. Designed antennas have been compared with each other and found that antennas‐II and III are better in performance as compared to antennas‐I and IV. Antenna‐II exhibits wider bandwidth of 1.26 (2.52‐3.78 GHz), 2.75 (4.03‐6.78 GHz), and 6.1 GHz (7.82‐13.92 GHz) with maximum gain of 7.14 dB. Similarly; antenna‐III exhibits the bandwidth of 340 MHz (1.92‐2.26 GHz), 820 MHz (3.04‐3.86 GHz), 4230 MHz (5.38‐9.61 GHz), and 3040 MHz (10.41‐13.45 GHz) with a maximum gain of 6.19 dB. Prototype of the designed antennas with satisfactory orientations are fabricated and tested for the validation of results. Simulated and measured results are also juxtaposed and observed in good agreement with each other. Antennas exhibit bidirectional and omnidirectional pattern in E‐plane and H‐plane, respectively, also the radiation efficiency of antennas are in acceptable range from 75% to 95%. Due to the wider bandwidth of designed antennas, they can be used for different wireless standards such as Advance Wireless Services AWS‐1, AWS‐2, AWS‐3, Wi‐MAX, WLAN, X‐band satellite communication, point‐to‐point wireless applications, ITU band, military satellite communication, television broadcasting, and military land and airborne systems.  相似文献   

16.
A novel zeroth‐order resonator (ZOR) meta‐material (MTM) antenna with dual‐band is suggested using compound right/left handed transmission line as MTM. In this article, suggested antenna consists of patch through series gap, two meander line inductors, and two circular stubs. The MTM antenna is compact in size which shows dual‐band properties with first band centered at 2.47 GHz (2.05‐2.89 GHz) and second band is centered at 5.9 GHz (3.70‐8.10 GHz) with impedance bandwidth of (S11 < ? 10 dB) 34.69% and 72.45%, respectively. At ZOR mode (2.35 GHz), the suggested antenna has overall dimension of 0.197λo × 0.07λo × 0.011λo with gain of 1.65 dB for ZOR band and 3.35 dB for first positive order resonator band which covers the applications like Bluetooth (2.4 GHZ), TV/Radio/Data (3.700‐6.425 GHz), WLAN (5‐5.16 GHz), C band frequencies (5.15‐5.35, 5.47‐5.725, or 5.725‐5.875 GHz) and satellite communication (7.25‐7.9 GHz). The radiation patterns of suggested structure are steady during the operating band for which sample antenna has been fabricated and confirmed experimentally. It exhibits novel omnidirectional radiation characteristics in phi = 0° plane with lower cross‐polarization values.  相似文献   

17.
This paper presents a novel two layers beam‐steering array antenna fed by a 4 × 4 modified Butler matrix. Each of the radiation elements have been replaced by a collection of 2 × 2 circularly polarized (CP) square patches, which joined together by a modified sequentially rotated feed network. The antenna array consists of 2 × 5 CP square patches, which connected to four ring sequential rotation and fed by butler matrix. The proposed Butler matrix which plays a role as beam‐steering feed network consists of four novel 90° circular patch couplers and two 45° half circular patch phase shifter. Altogether, using of a 2 × 5 phased array antenna and a modified Butler matrix cause to empower array antenna for covering frequency range between 4.67 to 6.09GHz, the maximum gain of 14.98 dB and 3‐dB axial ratio bandwidth of 1.2GHz (4.9~6.1GHz) is attained.  相似文献   

18.
This article presents a 2 × 2 series fed 2.4 GHz patch antenna array having multiple beam switching capabilities by using two simple 3 dB/90° couplers to achieve required amplitude and phase excitations for array elements with reduced complexity, cost and size. The beam switching performance with consistent gain and low side lobe levels (SLL) is achieved by exciting the array elements from orthogonally placed thin quarter‐wave (λg/4) feeds. The implemented array is capable to generate ten (10) switched‐beams in 2‐D space when series fed elements are excited from respective ports through 3 dB quadrature couplers. The dual polarized characteristics of presented array provide intrinsic interport isolation between perpendicularly placed ports through polarization diversity to achieve independent beam switching capabilities for intended directions. The implemented antenna array on 1.575 mm thick low loss (tan δ = 0.003) NH9450 substrate with εr = 4.5 ± 0.10 provides 10 dB return loss impedance bandwidth of more than 50 MHz. The measured beam switching loss is around 0.8 dB for beams switched at θ = ±20°, Ф = 0°, 90°, and 45° with average peak gain of 9.5 dBi and SLL ≤ ?10 dB in all cases. The novelty of this work is the capability of generating ten dual polarized switched‐beams by using only two 3 dB/90° couplers as beam controllers.  相似文献   

19.
A wide‐angle scanning circularly polarized (CP) leaky‐wave antenna (LWA) with suppressed side‐lobe levels (SLLs) is proposed, which can be a good candidate for future radar and wireless communication systems. The LWA consists of 12 cross slotted elliptical patch elements, which are fed by a microstrip spoof surface plasmon polariton (SSPP) line. Two fundamental modes of the patch array with two orthogonal polarizations can be excited by the electromagnetic coupling between the array and the SSPP line. By optimizing the elliptical eccentricity e and etching cross slots on the elliptical patch array, a 90° phase difference is introduced, and then, the CP radiation is realized. A tapered aperture field distribution is also realized by adjusting coupling intensities between the patch elements and the SSPP line, which is beneficial to reduce the SLLs. The electrical size of the LWA is 1.29λ0 × 6.02λ0 × 0.08λ0, where λ0 is air wavelength at 12.9 GHz (broadside direction). Both the simulated and measured results indicate that the CP operating band is 12.0 to 15.0 GHz. The proposed CP LWA scans continuously from ?14° to 38°. In the whole operating band, the axial ratios are less than 3 dB, and the SLLs are less than ?20 dB as well.  相似文献   

20.
A miniature LTCC system‐in‐package (SiP) module has been presented for millimeter‐wave applications. A typical heterodyne 61 GHz transmitter (Tx) has been designed and fabricated in a type of the SiP module as small as 36 × 12 × 0.9 mm3. Five active chips including a mixer, driver amplifier, power amplifier, and two frequency multipliers were mounted on the single LTCC package substrate, in which all passive circuits such as a stripline (SL) BPF, 2 × 2 array patch antenna, surface‐mount technology (SMT) pads, and intermediate frequency (IF) feeding lines have been monolithically embedded by using vertical and planar transitions. The embedded SL BPF shows the center frequency of 60.8 GHz, BW of 4.1%, and insertion loss of 3.74 dB. The gain and 3‐dB beam width of the fabricated 2 × 2 array patch antenna are 7 dBi and 36 degrees, respectively. The assembled LTCC 61 GHz Tx SiP module achieves an output power of 10.2 dBm and an up‐conversion gain of 7.3 dB. Because of the integrated BPF, an isolation level between a local oscillation (LO) and RF signal is below 26.4 dBc and the spurious level is suppressed by lower than 22.4 dBc. By using a 61 GHz receiver (Rx) consisting of off‐the‐shelf modules, wireless communication test was demonstrated by comparing measured IF spectrums at the Tx and Rx part.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号