首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
In this article, a compact double‐layer microstrip ultra‐wideband (UWB) filtering power divider with high selectivity and isolation is proposed. The filtering power divider consists of a multimode resonator at the top layer coupled with a pair of branch lines at the bottom through a slotline in the middle ground. The slotline provides strong coupling between the two layers and equally distributes the power to two branch lines. The resistor loaded about a quarter‐wavelength away from the slotline achieves high isolation within UWB range. The UWB filtering properties with controllable transmission poles and zeros as well as power splitting with enhanced isolation have been analyzed. The adjustable transmission zeros of the filter unit enables the bandwidth control of the filtering power divider. Finally, a UWB filtering power divider operating at 3.1 to 10.6 GHz has been designed, fabricated, and measured. It achieves a compact size of only 26 × 28 mm2, high isolation about 20 dB, and good out‐of‐band suppression of 40 dB.  相似文献   

2.
This article proposes a new dual‐band single‐ended‐to‐balanced (SETB) filtering power divider (FPD), which shows the excellent characteristics of wideband common‐mode (CM) suppression and good selectivity. By employing the structure of double‐sided parallel‐strip line with a mid‐inserted conductor and a T‐shaped defected ground structure etched in the mid‐inserted conductor, out‐of‐phase behavior and high CM suppression can be achieved successfully. Besides, to realize dual‐wideband filtering performance and high selectivity, two pairs of step impedance stubs (SIS) loaded quarter‐wavelength central line‐terminal‐shorted three parallel‐coupled microstrip lines structure are adopted. Meanwhile, two pairs of resistors are introduced so as to realize excellent isolation. To verify effectiveness of the design method, a prototype of dual‐band SETB FPD which operates at 3.2 and 4.9 GHz is designed, fabricated, and tested. Final results exhibit that the new dual‐band SETB FPD possess high selective dual‐band differential mode response, wideband CM suppression, and excellent isolation between the balanced output ports.  相似文献   

3.
Capability of microstrip nonuniform transmission lines (MNTLs) for construction of dual‐band and broadband unequal Wilkinson power dividers with arbitrary‐way, arbitrary frequency band operations, and arbitrary power divisions is evaluated. Also, the MNTL transformers are introduced for dual‐band/broadband matching of the unequal output impedances of the MNTL power divider with arbitrary output terminal impedances. The strip width of MNTLs is considered variable and is written as a truncated Fourier series expansion. To show the validity of the design procedure, three experimental MNTL Wilkinson power dividers, which are dual‐band two‐ and three‐way power dividers with different power divisions working at 1 and 3.4 GHz and one broadband equal power divider working from 0.4 to 1.8 GHz, have been designed and fabricated. In the first ones with power division of 1.5, outputs isolation and ports matching of less than ?30 dB are achieved. Next, an extended recombinant structure is presented for achieving three‐way MNTL power dividers with dual‐band operation. The measured isolation between outputs and ports matching are better than 30 dB and measured forward transmissions are between ?4.87 and ?5.45 in two passbands of the divider. Also, for the proposed broadband divider, the measured isolation between the outputs is better than 13 dB in 127% desired bandwidth. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013.  相似文献   

4.
A novel half‐mode substrate integrated waveguide (HMSIW) based dual‐band bandpass filter (DBBPF) is proposed. Back to back connected two defected ground structure (DGS) resonators on the top layer of HMSIW cavity constitute the passband with two transmission zeros (TZs) at a lower frequency. The higher modes TE301 and TE302 of HMSIW cavity give the passband response at higher frequency using the mode shifting technique with slot perturbation. The source‐load coupling has been used to create finite frequency TZs to improve the selectivity of the second passband. Therefore, the proposed filter gives two widely separated passbands, center frequencies (CFs) at 5.83 and 18.1 GHz with an attenuation of greater than 10 dB between the passbands. The synthesized filter is fabricated using a low‐cost single layer PCB process, and the measured S‐parameters are almost mimic the EM‐simulation results.  相似文献   

5.
In this article, a dual‐band filtering power divider with unequal power‐division ability is proposed. Different from conventional equal power dividers constructed by filters or coupled resonators, noncoupled structures are employed in this design. As a result, low‐loss characteristic is realized for the proposed power divider. In this proposed structure, the dual‐band unequal power allocation is realized by replacing conventional single‐band λ/4 transformers with dual‐band ones (T‐junction structures). Three identical λ/4 stepped impedance resonators are properly attached to all the three ports of the proposed power divider to generate an extra transmission zero between two operational bands. Therefore, a filter‐like shaping in its S‐parameter results is obtained. A resistor is located between two outputs for output isolation. Mathematical derivations of the overall design procedure are also provided based on the circuit models and transmission line theory. Meanwhile, a resistor for output isolation is also included between two outputs, whose value can be calculated using given equations. For validation, a prototype operating at 0.9 and 2.1 GHz are designed, fabricated, and measured. The isolations between two outputs are 30 and 26 dB while the phase differences are only 2.5°and 4.9° at 0.9 and 2.1 GHz in the measurement, indicating good consistence of outputs. Measured |S21| and |S31| are ?(1.76 + 0.3) dB, ?(4.77 + 0.2) dB at 0.9 GHz and ?(1.76 + 0.6) dB, ?(4.77 + 0.5) dB at 2.1 GHz.  相似文献   

6.
In this paper, two ultracompact power dividers based on the substrate integrated waveguide (SIW) and half‐mode SIW (HMSIW) technologies loaded by complementary split‐ring resonators (CSRRs) are presented. The presented structures are designed based on the theory of evanescent mode propagation. To obtain a size reduction, the CSRR unit cells are etched on the metallic surface of the SIW and HMSIW structures. First, a two‐way HMSIW power divider is reported. In this circuit, the concept of HMSIW is utilized aiming at a further size reduction in addition to the size reduction by the CSRR unit cells. Then, a four‐way SIW power divider is designed so that the direct coaxial feed is used for the input port and microstrip transmission lines are used for the output ports. Both two‐way and four‐way SIW/HMSIW power dividers at 5.8 GHz covering WLAN are designed, fabricated, and measured. They respectively have 0.18 × 0.21 λg2 and 0.38 × 0.21 λg2 total size. A fair agreement between simulated and measured results is achieved. The measured insertion losses are 0.5 ± 0.5 and 0.6 ± 0.5 dB for the two‐way and four‐way SIW/HMSIW power dividers, respectively, in the operating band of interest.  相似文献   

7.
A novel compact dual‐band power divider with filtering responses is presented in this article. The proposed circuit utilizes coupled quarter‐wavelength stepped‐impedance resonators. By controlling these resonators, dual‐band operation can be realized. Furthermore, a resistor is connected between the two open ends of the input feed line to obtain good isolation at two bands. Source load coupling is utilized to enhance the selectivity. To verify the proposed idea, a filtering power divider with the operating frequencies of 2.4 and 5.8 GHz is implemented. Good agreement between the simulated and measured results validates the proposed idea. The total size of the circuit is 0.23λg × 0.28λg, where λg is the guide wavelength of 2.4 GHz. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:262–267, 2016.  相似文献   

8.
In this article, a wideband filtering power divider with good in‐band and out‐of‐band isolations is designed based on a hybrid Wilkinson and Gysel structure. To achieve a good in‐band response, two additional in‐band transmission poles can be introduced by installing the coupled‐line structures at each port. By mounting a stepped impedance open stub at the input port, two transmission zeros are generated near the passband to improve the passband skirt. Furthermore, the out‐of‐band rejection and isolation are achieved by the other two transmission zeros, which are produced by the open stub and the three coupled‐line sections mentioned above. Additionally, a good in‐band isolation is realized by the isolation resistor between output ports. For the demonstration, a wideband filtering power divider centered at 1.5 GHz with a 56% fractional bandwidth and 20‐dB isolation is designed and fabricated. The simulated and measured results are in good agreement with each other.  相似文献   

9.
In this study, a filtering power divider (FPD) is proposed by utilizing one T‐shaped tri‐mode stepped‐impedance resonator with input/output coupling structures based on substrate‐integrated suspended line (SISL). The circuit topology and SISL technology are combined together to reach balance in performances such as compact size, wideband, high frequency selectivity, low loss, good in‐band isolation, wide stopband, and self‐packaging so that there are no obvious flaws. Wide bandwidth and two near‐band transmission zeros are contributed by the proposed circuit topology. Good isolation can be obtained by comparing different coupling schemes with one resistor. An additional transmission zero for extending the upper stopband can be achieved by the two closely placed stubs without increasing the size of the design. Low loss and self‐packaging can be realized by SISL technology. For demonstration, a prototype is implemented with the size of 0.5λg × 0.28λg, which exhibits the 1‐dB fractional bandwidth of 26.3%, the frequency selectivity of 0.25/0.37 at the lower/upper edges of the passband, and the insertion loss of 1.1 dB (including transition) at the center frequency (f0) of 3.34 GHz, while the in‐band isolation is higher than 20 dB and the 15‐dB stopband is achieved up to 3.74 f0.  相似文献   

10.
This article presents a dual‐band microstrip filtering power divider with widely separated passbands. The design topology is mainly constructed by two pairs of dual‐mode resonators, an open‐ended input line and two T‐shaped output lines. Owing to the field symmetry at the two sides of the input line, two identical signals are coupled to the resonators and finally transmitted at two output ports. Since each pair of the employed dual‐mode resonators can be independently designed, widely separated dual‐passbands response is specified and derived in this work with the even‐mode/odd‐mode analysis. Moreover, good isolation with wide isolated frequency band is realized by introducing resistors between each pair of resonators. To validate the design concept, a prototype centering at 2.39 and 3.83 GHz is implemented following the given design procedure. Measured results of the fabricated circuit agree well with the simulated ones, exhibit high frequency selectivity, good port‐to‐port isolation, and port matching.  相似文献   

11.
In this article, a four‐way waveguide power divider is proposed for W‐band applications. The waveguide power divider employs an improved H‐plane T‐junction configuration. With the introduction of a metallic tetrahedral protrusion into the waveguide junction, good impedance matching can be achieved within a wide frequency range. First, a two‐way power divider is designed and analyzed, achieving almost identical amplitude and phase response at its two output ports. Then, other two same T‐junctions are cascaded, respectively, at the two output ports of the two‐way power divider to realize the proposed four‐way power divider. The four‐way power divider has been optimized, fabricated, and measured. The measurement results agree with the simulation ones reasonably, which demonstrates that the input return loss of the proposed four‐way power divider maintains above 14 dB across the entire W‐band with an insertion loss of less than 1.3 dB. Therefore, it could find wide applications in W‐band power splitting and combining modules.  相似文献   

12.
The contribution of this work is to propose a cavity‐based antenna with both dual‐polarization and bandpass filter characteristics. Proper cavity resonators and antenna based on the substrate integrated waveguide (SIW) technology are designed utilizing the low temperature co‐fired ceramics (LTCC) for demonstration. By properly arranging and coupling the cavities, a shaping of filter‐like response for the antenna gain and input return loss can be obtained. Measures for achieving a good isolation and a low cross‐polarization level have also been taken into account during the design procedure. A 4th‐order prototype working in the Ka‐band is designed and fabricated. Investigations show that the antenna presents a good isolation below ‐29 dB across the operating bandwidth, together with a cross‐polarization level lower than ‐25 dB at the center working frequency. The performance of the prototype has been verified in the measurement.  相似文献   

13.
A novel differential power divider with bandpass filtering response using the substrate integrated waveguide (SIW) technology is presented. An SIW resonant cavity operated in a balanced resonant mode with odd symmetric electric field distribution is utilized to provide both balanced inputs/outputs and expected common‐mode (CM) suppression in a certain band. Meanwhile, by properly constructing the cross‐coupled topology of SIW resonant cavities, the proposed differential power divider achieves a high‐selectivity bandpass filtering response with two transmission zeros on both sides of the passband. The differential power divider is designed and prototyped on a single‐layer printed circuit board (PCB). The measured center frequency is at 10.6 GHz with 490 MHz 3‐dB bandwidth. A good CM suppression can also be achieved within the operating band. The measured in‐band differential‐mode imbalance for magnitude is ±0.3 dB, while for phase is 0°–4°. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:182–188, 2016.  相似文献   

14.
In this article, a dual‐wideband filtering power divider is proposed by using a center‐fed three‐line coupled structure with three open stubs and two isolation resistors. The center‐fed three‐line coupled structure can generate two wide passbands separated by a transmission zero (TZ). The three open stubs can achieve four TZs around the two passbands, which is conducive to the frequency selectivity. Compared with the reported designs, the bandwidth is extended and the performance of isolation, insertion loss and circuit size can reach balance. The proposed design is implemented with size of 0.22 λg × 0.39 λg (λg is the guided wavelength at the center frequency of the lower passband) which exhibits the 3‐dB fractional bandwidths of 56.5%/24.27% and the insertion loss of 0.51/0.68 dB at the center frequency of two passband (f1/ f2) of 1.94/4.2 GHz, while the isolation at f1/f2 are higher than 22.5/20.1 dB.  相似文献   

15.
A symmetrical two‐way Wilkinson power divider with shifted output ports, much wide bandwidth and large frequency‐ratio is proposed for dual‐band application. The corresponding transcendental design equations are derived by using the even‐ and odd‐mode analysis. Moreover, the closed‐form scattering parameter expressions are derived. Transcendental design equations are solved and accurate numerical design parameters along with different frequency ratios are obtained. Finally, the proposed structure and design method are validated by simulated and experimental results of typical microstrip planar power dividers, the performance is clearly observed for the input and output matching, isolation and transmission characteristic very well at the two band frequencies. More specifically, the measured transmission characteristics of the divider are 3.11 dB/3.58 dB at the 1.0 GHz/3.5 GHz, respectively. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:102–108, 2014.  相似文献   

16.
A Ka‐band power divider/combiner with dual magnetic coupling semicircular ring probes is proposed in this paper. Firstly, a broadband microstrip‐to‐waveguide transition with semicircular ring probe is designed based on the side‐inserted structure of magnetic field excitation in a rectangular waveguide. The insertion loss of the proposed transition is less than 0.7 dB in Ka‐band assisted by the dual symmetrical broadband probes and rectangular waveguide. Then, the divider/combiner is proposed using the new transition with magnetic coupling from narrow wall into the rectangular waveguide. The bandwidth of the divider/combiner is more than 9 GHz (from 27 to 36.7 GHz), and the insertion loss of the single divider/combiner is less than 3.3 dB. Finally, the performance of the proposed divider/combiner is validated through simulations and measurements. The proposed design has potential applications in microstrip circuits.  相似文献   

17.
Based on the double‐sided parallel‐strip lines with an inserted conductor as a virtual ground, a high power divider with dual‐band/broadband response and frequency‐independent 180° phase difference between the output ports is implemented in this paper. The circuit topology employs a single commercially available external isolation resistor as well as moderate line impedances (15–100 ohm), making it suitable for high‐power applications. Precise closed‐form design equations on the basis of even‐ and odd‐mode analysis are derived. In addition to the wide range of frequency band ratios from 1 to 2.65, broadband response is also obtained by selecting the proper value of frequency band ratios. To substantiate the design equations and theory, a circuit with 2:1 frequency ratio and 84.5% bandwidth referring to 16 dB isolation and 12 dB return loss values is developed. To the authors' knowledge, this is the widest bandwidth reported for out‐of‐phase high power dividers. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2016.  相似文献   

18.
A quarter‐mode (QM) substrate‐integrated‐waveguide (SIW) cavity is designed as a dual‐functional component. By etching three slots, four sub‐cavities are formed and then two of them with the same size are individually fed by a coaxial port. Three resonating frequencies are excited in the single QM SIW cavity. One of them can radiate cavity energy input by these ports into free space, implying a two‐element multiple‐input‐multiple‐output (MIMO) antenna, whereas the other two can transmit energy from one port to the other port, indicating a second‐order bandpass filter. Moreover, antenna isolation and filter bandwidth can be adjusted to a certain degree. A prototype with the overall size of 0.40λ0 × 0.40λ0 × 0.02λ0 has been fabricated. The integrated bandpass filter demonstrates the measured center frequency of 3.8 GHz and operating bandwidth of 32 MHz while the integrated MIMO antenna exhibits the frequency of 3.4 GHz, bandwidth of 67 MHz, port isolation of 18.0 dB, radiation gain of 4.0 dBi, and envelope correlation coefficient of 0.25.  相似文献   

19.
In this article, a general design methodology of a multi‐way compact equal split Wilkinson power divider (WPD) with bandwidth redefinition characteristics and planar structure is proposed. Quarter‐wave matching uniform transmission lines in the conventional design are replaced with non‐uniform transmission lines (NTLs) governed by a truncated Fourier series. Even mode analysis is adopted to obtain NTLs with predefined bandwidth functionalities; whereas several isolation resistors are optimized in the odd mode analysis to achieve proper isolation and output ports matching over the frequency range of interest. Compactness is achieved by incorporating only one quarter‐wave wideband NTL transformer, with a length computed at the center frequency, in each arm. Two 3‐way WPDs with different frequency bands (i. e., 5‐9 GHz and 4‐10 GHz) and one 5‐9 GHz 4‐way divider examples are designed and simulated. Furthermore, a wideband 3‐way WPD operating over 4‐10 GHz band is fabricated and measured. Results show input and output ports matching and isolation below ?15 dB, and transmission parameters in the range of [–4.9,–6.2] dB and [–6,–7.5] dB across the operating band of the 3‐way and 4‐way WPDs, respectively.  相似文献   

20.
A wideband bandpass filter (BPF) is designed based on U‐slotted slow wave half mode substrate integrated waveguide (SW‐HMSIW) cavities. Similar to the substrate integrated waveguide (SIW), the SW‐HMSIW can also achieve a highpass characteristic while the lateral dimensions can be reduced by about 50%. By etching a U‐shape slot on the SW‐HMSIW cavity, a multiple‐mode resonator (MMR) can be realized, which can achieve a wide passband response and make the overall dimension of the filter much more compact. A wide passband, covering from 6.0 GHz to 10.65 GHz with a FBW about 58.13% is achieved. The measured minimum insertion losses including the losses from SMA connectors are 1.1 dB and return losses are better than 10 dB. Besides, the group delay varies between 0.2 and 0.5 ns within the passband. To validate its practicability, a wideband SW‐HMSIW BPF fabricated on a double‐layer printed circuit board (PCB) is designed and examined. The proposed filter has a more than 54% size reduction compared to the other designs reported in open literatures. The measured results have a good agreement with the simulated results. The effective size of the fabricated filter is about 27 mm × 8.55 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号