首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
Span programs provide a linear algebraic model of computation. Lower bounds for span programs imply lower bounds for formula size, symmetric branching programs, and contact schemes. Monotone span programs correspond also to linear secret-sharing schemes. We present a new technique for proving lower bounds for monotone span programs. We prove a lower bound of (m 2.5) for the 6-clique function. Our results improve on the previously known bounds for explicit functions.  相似文献   

2.
We extend the area of applications of the Abstract Harmonic Analysis to lower bounds on the circuit and decision tree complexity of Boolean functions related to some number theoretic problems. In particular, we prove that deciding if a given integer is square-free and testing co-primality of two integers by unbounded fan-in circuits of bounded depth requires superpolynomial size.  相似文献   

3.
Abstract. A graph-theoretic approach to study the complexity of Boolean functions was initiated by Pudlák, Rödl, and Savický [PRS] by defining models of computation on graphs. These models generalize well-known models of Boolean complexity such as circuits, branching programs, and two-party communication complexity. A Boolean function f is called a 2-slice function if it evaluates to zero on inputs with less than two 1's and evaluates to one on inputs with more than two 1's. On inputs with exactly two 1's f may be nontrivially defined. There is a natural correspondence between 2-slice functions and graphs. Using the framework of graph complexity, we show that sufficiently strong superlinear monotone lower bounds for the very special class of {2-slice functions} would imply superpolynomial lower bounds over a complete basis for certain functions derived from them. We prove, for instance, that a lower bound of n 1+Ω(1) on the (monotone) formula size of an explicit 2-slice function f on n variables would imply a 2 Ω(?) lower bound on the formula size over a complete basis of another explicit function g on l variables, where l=Θ( log n) . We also consider lower bound questions for depth-3 bipartite graph complexity. We prove a weak lower bound on this measure using algebraic methods. For instance, our result gives a lower bound of Ω(( log n) 3 / ( log log n) 5 ) for bipartite graphs arising from Hadamard matrices, such as the Paley-type bipartite graphs. Lower bounds for depth-3 bipartite graph complexity are motivated by two significant applications: (i) a lower bound of n Ω(1) on the depth-3 complexity of an explicit n -vertex bipartite graph would yield superlinear size lower bounds on log-depth Boolean circuits for an explicit function, and (ii) a lower bound of $\exp((\log \log n)^{\omega(1)})$ would give an explicit language outside the class Σ 2 cc of the two-party communication complexity as defined by Babai, Frankl, and Simon [BFS]. Our lower bound proof is based on sign-representing polynomials for DNFs and lower bounds on ranks of ±1 matrices even after being subjected to sign-preserving changes to their entries. For the former, we use a result of Nisan and Szegedy [NS] and an idea from a recent result of Klivans and Servedio [KS]. For the latter, we use a recent remarkable lower bound due to Forster [F1].  相似文献   

4.
   Abstract. A graph-theoretic approach to study the complexity of Boolean functions was initiated by Pudlák, R?dl, and Savicky [PRS] by defining models of computation on graphs. These models generalize well-known models of Boolean complexity such as circuits, branching programs, and two-party communication complexity. A Boolean function f is called a 2-slice function if it evaluates to zero on inputs with less than two 1's and evaluates to one on inputs with more than two 1's. On inputs with exactly two 1's f may be nontrivially defined. There is a natural correspondence between 2-slice functions and graphs. Using the framework of graph complexity, we show that sufficiently strong superlinear monotone lower bounds for the very special class of {2-slice functions} would imply superpolynomial lower bounds over a complete basis for certain functions derived from them. We prove, for instance, that a lower bound of n 1+Ω(1) on the (monotone) formula size of an explicit 2-slice function f on n variables would imply a 2 Ω(ℓ) lower bound on the formula size over a complete basis of another explicit function g on l variables, where l=Θ( log n) . We also consider lower bound questions for depth-3 bipartite graph complexity. We prove a weak lower bound on this measure using algebraic methods. For instance, our result gives a lower bound of Ω(( log n) 3 / ( log log n) 5 ) for bipartite graphs arising from Hadamard matrices, such as the Paley-type bipartite graphs. Lower bounds for depth-3 bipartite graph complexity are motivated by two significant applications: (i) a lower bound of n Ω(1) on the depth-3 complexity of an explicit n -vertex bipartite graph would yield superlinear size lower bounds on log-depth Boolean circuits for an explicit function, and (ii) a lower bound of
would give an explicit language outside the class Σ 2 cc of the two-party communication complexity as defined by Babai, Frankl, and Simon [BFS]. Our lower bound proof is based on sign-representing polynomials for DNFs and lower bounds on ranks of ±1 matrices even after being subjected to sign-preserving changes to their entries. For the former, we use a result of Nisan and Szegedy [NS] and an idea from a recent result of Klivans and Servedio [KS]. For the latter, we use a recent remarkable lower bound due to Forster [F1].  相似文献   

5.
We show that the shrinkage exponent, under random restrictions, of formulae over a finite complete basis B of Boolean functions, is strictly greater than 1 if and only if all the functions in B are unate, i.e., monotone increasing or decreasing in each of their variables. As a consequence, we get non-linear lower bounds on the formula complexity of the parity function over any basis composed only of unate functions. Received: June 15, 2000.  相似文献   

6.
Several results on the monotone circuit complexity and the conjunctive complexity, i.e., the minimal number of AND gates in monotone circuits, of quadratic Boolean functions are proved. We focus on the comparison between single level circuits, which have only one level of AND gates, and arbitrary monotone circuits, and show that there is an exponential gap between the conjunctive complexity of single level circuits and that of general monotone circuits for some explicit quadratic function. Nearly tight upper bounds on the largest gap between the single level conjunctive complexity and the general conjunctive complexity over all quadratic functions are also proved. Moreover, we describe the way of lower bounding the single level circuit complexity and give a set of quadratic functions whose monotone complexity is strictly smaller than its single level complexity.  相似文献   

7.
We develop a new technique for proving lower bounds in property testing, by showing a strong connection between testing and communication complexity. We give a simple scheme for reducing communication problems to testing problems, thus allowing us to use known lower bounds in communication complexity to prove lower bounds in testing. This scheme is general and implies a number of new testing bounds, as well as simpler proofs of several known bounds. For the problem of testing whether a Boolean function is k-linear (a parity function on k variables), we achieve a lower bound of ??(k) queries, even for adaptive algorithms with two-sided error, thus confirming a conjecture of Goldreich (2010a). The same argument behind this lower bound also implies a new proof of known lower bounds for testing related classes such as k-juntas. For some classes, such as the class of monotone functions and the class of s-sparse GF(2) polynomials, we significantly strengthen the best known bounds.  相似文献   

8.
We shall give simpler proofs of some lower bounds on monotone computations. We describe a simple condition on combinatorial structures, such that the rank of the matrix associated with these structures gives lower bounds on monotone span program size and monotone formula size. We also prove an upper bound on the rank of the corresponding matrices, and show that such structures can be constructed from self-avoiding families. As a corollary, we obtain an upper bound on the size of self-avoiding families, which solves a problem posed by Babai and Gál [Combinatorica 19 (3) (1999) 301-319].  相似文献   

9.
In contrast to machine models like Turing machines or random access machines, circuits are a static computational model. The internal information flow of a computation is fixed in advance, independent of the actual input. Therefore, size and depth are natural and simple measures for circuits and provide a worst-case analysis. We consider a new model in which an internal gate is evaluated as soon as its result has been determined by a partial assignment of its inputs. This way, a dynamic notion of delay is obtained which gives rise to an average case measure for the time complexity of circuits. In a previous paper we have obtained tight upper and lower bounds for the average case complexity of several basic Boolean functions. This paper examines the asymptotic average case complexity for the set of alln-ary Boolean functions. In contrast to worst case analysis a simple counting argument does not work. We prove that with respect to the uniform probability distribution almost all Boolean functions require at leastn−log n−log log nexpected time. On the other hand, there is a significantly large subset of functions that can be computed with a constant average delay. Finally, for an arbitrary Boolean function we compare its worst case and average case complexity. It is shown that for each function that requires circuit depthd, i.e. of worst-case complexityd, the expected time complexity will be at leastd−log n−log dwith respect to an explicitly defined probability distribution. In addition, a nontrivial upper bound on the complexity of such a distribution will be obtained.  相似文献   

10.
Summary Neciporuk [3], Lamagna/Savage [1] and Tarjan [6] determined the monotone network complexity of a set of Boolean sums if each two sums have at most one variable in common. By this result they could define explicitely a set of n Boolean sums which depend on n variables and whose monotone complexity is of order n 3/2. In the main theorem of this paper we prove a more general lower bound on the monotone network complexity of Boolean sums. Our lower bound is for many Boolean sums the first nontrivial lower bound. On the other side we can prove that the best lower bound which the main theorem yields is the n 3/2-bound cited above. For the proof we use the technical trick of assuming that certain functions are given for free.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号