首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among many existing distance measures for time series data, Dynamic Time Warping (DTW) distance has been recognized as one of the most accurate and suitable distance measures due to its flexibility in sequence alignment. However, DTW distance calculation is computationally intensive. Especially in very large time series databases, sequential scan through the entire database is definitely impractical, even with random access that exploits some index structures since high dimensionality of time series data incurs extremely high I/O cost. More specifically, a sequential structure consumes high CPU but low I/O costs, while an index structure requires low CPU but high I/O costs. In this work, we therefore propose a novel indexed sequential structure called TWIST (Time Warping in Indexed Sequential sTructure) which benefits from both sequential access and index structure. When a query sequence is issued, TWIST calculates lower bounding distances between a group of candidate sequences and the query sequence, and then identifies the data access order in advance, hence reducing a great number of both sequential and random accesses. Impressively, our indexed sequential structure achieves significant speedup in a querying process. In addition, our method shows superiority over existing rival methods in terms of query processing time, number of page accesses, and storage requirement with no false dismissal guaranteed.  相似文献   

2.
随着时代的飞速发展,人们对智能生活的追求不断提高,空间查询也被人们愈来愈重视。移动空间关键字查询,作为一种主要的连续空间查询类型,受到了广泛的研究。在最新的顶尖会议文刊中,提出了一种新的查询类型,称为移动集合空间关键字查询(MCSKQ)。这种类型的查询不断报告一组对象,这些对象在查询移动时共同覆盖查询关键字。同时,返回的对象也必须靠近查询对象并且彼此靠近。计算精确的结果集是一个NP-hard的问题。为了降低查询处理的成本,本文提出了基于安全区域技术的算法,在查询对象移动时,保持精确的结果集。在其基础上,本文基于MCKSQ的思想提出新的优化策略,以降低查询处理成本的方法。  相似文献   

3.
Batch Nearest Neighbor Search for Video Retrieval   总被引:2,自引:0,他引:2  
To retrieve similar videos to a query clip from a large database, each video is often represented by a sequence of high- dimensional feature vectors. Typically, given a query video containing m feature vectors, an independent nearest neighbor (NN) search for each feature vector is often first performed. After completing all the NN searches, an overall similarity is then computed, i.e., a single content-based video retrieval usually involves m individual NN searches. Since normally nearby feature vectors in a video are similar, a large number of expensive random disk accesses are expected to repeatedly occur, which crucially affects the overall query performance. Batch nearest neighbor (BNN) search is stated as a batch operation that performs a number of individual NN searches. This paper presents a novel approach towards efficient high-dimensional BNN search called dynamic query ordering (DQO) for advanced optimizations of both I/O and CPU costs. Observing the overlapped candidates (or search space) of a pervious query may help to further reduce the candidate sets of subsequent queries, DQO aims at progressively finding a query order such that the common candidates among queries are fully utilized to maximally reduce the total number of candidates. Modelling the candidate set relationship of queries by a candidate overlapping graph (COG), DQO iteratively selects the next query to be executed based on its estimated pruning power to the rest of queries with the dynamically updated COG. Extensive experiments are conducted on real video datasets and show the significance of our BNN query processing strategy.  相似文献   

4.
覃遵跃  蔡国民  张彬连  汤庸 《计算机科学》2015,42(2):157-160,181
对有序XML文档树进行编码,不需要访问XML原始文件就能够实现对XML数据的管理,提高了XML管理系统的效率。针对查询提出的编码方案具有很高的查询性能,但更新效率很低。为提高更新性能而设计的方案存在查询效率低或者编码空间大等问题。为了在提高更新XML文档效率的同时不对查询性能和编码空间产生负面影响,提出了一种新的编码方法VEMBP(Vector Encoding Method Based of Prime),该方法利用向量表示有序XML节点之间的顺序关系,采用素数表示有序XML文档节点之间的结构信息;并设计了一种算法来实现在没有牺牲查询性能的前提下完全避免更新过程中的二次编码和重新计算,降低了更新代价,同时编码空间也得到了控制。实验结果显示,VEMBP具有较好的查询和更新性能。  相似文献   

5.
With the increasing availability of moving-object tracking data, trajectory search and matching is increasingly important. We propose and investigate a novel problem called personalized trajectory matching (PTM). In contrast to conventional trajectory similarity search by spatial distance only, PTM takes into account the significance of each sample point in a query trajectory. A PTM query takes a trajectory with user-specified weights for each sample point in the trajectory as its argument. It returns the trajectory in an argument data set with the highest similarity to the query trajectory. We believe that this type of query may bring significant benefits to users in many popular applications such as route planning, carpooling, friend recommendation, traffic analysis, urban computing, and location-based services in general. PTM query processing faces two challenges: how to prune the search space during the query processing and how to schedule multiple so-called expansion centers effectively. To address these challenges, a novel two-phase search algorithm is proposed that carefully selects a set of expansion centers from the query trajectory and exploits upper and lower bounds to prune the search space in the spatial and temporal domains. An efficiency study reveals that the algorithm explores the minimum search space in both domains. Second, a heuristic search strategy based on priority ranking is developed to schedule the multiple expansion centers, which can further prune the search space and enhance the query efficiency. The performance of the PTM query is studied in extensive experiments based on real and synthetic trajectory data sets.  相似文献   

6.
Green computing is the study and practice of efficiently using computers resources. The main purpose of green computing is to achieve an algorithmic efficiency by designing resource-efficient, accurate and energy-efficient algorithms. It is important to achieve the algorithmic efficiency in handling time-series data. One of the main tasks in handling time-series data is to find subsequence matches similar to a given query sequence. The state-of-the-art methods to find subsequence matches in time-series data produce many false alarms by filtering points through comparing only one query window with its corresponding data window. In this paper, we propose a subsequence matching method for green computing, which is called the Efficient Duality-based Subsequence Matching (simply, E-Dual Match). E-Dual Match handles all possible query windows for determining candidates. Hence, E-Dual Match not only reduces the false alarms, and improves the performance compared to Dual Match, but also does so by considering the main requirements of the green computing. In other words, E-Dual Match efficiently uses limited computer resources, accurate and energy-efficient. Experiment results show that E-Dual Match reduces the number of candidates by up to 4.90 times over Dual Match, and improves the subsequence matching time by up to 2.35 times over Dual Match. We also show that E-Dual Match reduces the number of data page accesses by up to 3.04 times over Dual Match.  相似文献   

7.
An inverted index is a core data structure of Information Retrieval systems, especially in search engines. Since the search environments have become more dynamic, many on-line index maintenance strategies have been proposed. Previous strategies were designed for HDDs. Consequently, in order to avoid expensive random access cost, Merge-based strategies have been preferred to In-place index update strategies on HDDs. However, flashSSDs have become solid alternatives to HDDs. FlashSSDs currently are adopted in a wide range of areas due to their superior features such as the short access latency, energy efficiency, and high bandwidth. In this article, we first reexamined potentials of In-place index update strategies on flashSSDs. Thanks to the insignificant access latency of flashSSDs, we discovered that In-place index update strategies outperform Merge-based strategies, since In-place index update strategies generate much less amount of I/O than Merge-based strategies despite inducing frequent random accesses. Based on this discovery, we suggest a new inverted index maintenance strategy based on an In-place index update strategy for flashSSDs, called Multipath Flash In-place Strategy (MFIS). To enhance the index maintenance performance, MFIS stores the posting list of each term non-contiguously and exploits the internal parallelism of flashSSDs. Thus, MFIS not only induces the minimum amount of I/O but also utilizes the maximum bandwidth of flashSSDs. Furthermore, MFIS is designed to show high query processing performance by utilizing the internal parallelism of flashSSDs even though the posting list of each term is stored non-contiguously. In our experiments, the index maintenance performance of MFIS was considerably better than other previous maintenance strategies. The index maintenance performance was up to 14.93, 4.04, 5.12, and 2.33 times higher than Merge-based strategies such as Immediate Merge, Geometric Partitioning, Hybrid, and SSD-aware Hybrid, respectively. The query processing performance of MFIS was up to 1.62 times higher than non-contiguous In-place. In addition, MFIS showed almost the best query processing performance as Merge-based strategies did. In conclusion, MFIS is the best on-line inverted index maintenance strategy on flashSSDs in terms of both index maintenance and query processing performance.  相似文献   

8.
李晨  申德荣  朱命冬  寇月  聂铁铮  于戈 《软件学报》2016,27(9):2278-2289
互联网上每天都会产生大量的带地理位置标签和时间标签的信息,比如微博、新闻、团购等等,如何在众多的信息中找到在时间和空间地理位置上都满足用户查询需求的信息十分重要.针对这一需求,提出了一种对地理位置和时间信息的k近邻查询(ST-kNN查询)处理方法.首先,利用时空相似度对数据对象的地理位置变量和时间变量进行映射变换,将数据对象映射到新的三维空间中,用三维空间中两点之间的距离相似度来近似代替两个对象之间实际的时空相似度;然后,针对这个三维空间设计了一种ST-Rtree(spatial temporal rtree)索引,该索引综合了空间因素和时间因素,保证在查询时每个对象至多遍历1次;最后,在该索引的基础上提出了一种精确的k近邻查询算法,并通过一次计算确定查询结果范围,从而找到前k个结果,保证了查询的高效性.基于大量数据集的实验,证明了该查询处理方法的高效性.  相似文献   

9.
Skyline查询是一个典型的多目标优化查询,在多目标优化、数据挖掘等领域有着广泛的应用。现有的Skyline查询处理算法大都假定数据集存放在单一数据库服务器中,查询处理算法通常也被设计成针对单一服务器的串行算法。随着数据量的急剧增长,特别是在大数据背景下,传统的基于单机的串行Skyline算法已经远远不能满足用户的需求。基于流行的分布式并行编程框架MapReduce,研究了适用于大数据集的并行Skyline查询算法。针对影响MapReduce计算的因素,对现有基于角度的划分策略进行了改进,提出了Balanced Angular划分策略;同时,为了减少Reduce过程的计算量,提出了在Map端预先进行数据过滤的策略。实验结果显示所提出的Skyline查询算法能显著提升系统性能。  相似文献   

10.
Indexing is one of the most important techniques to facilitate query processing over a multi-dimensional dataset. A commonly used strategy for such indexing is to keep the tree-structured index balanced. This strategy reduces query processing cost in the worst case, and can handle all different queries equally well. In other words, this strategy implies that all queries are uniformly issued, which is partially because the query distribution is not possibly known and will change over time in practice. A key issue we study in this work is whether it is the best to fully rely on a balanced tree-structured index in particular when datasets become larger and larger in the big data era. This means that, when a dataset becomes very large, it becomes unreasonable to assume that all data in any subspace are equally important and are uniformly accessed by all queries at the index level. Given the existence of query skew and the possible changes of query skew, in this paper, we study how to handle such query skew and such query skew changes at the index level without sacrifice of supporting any possible queries in a wellbalanced tree index and without a high overhead. To tackle the issue, we propose index-view at the index level, where an index-view is a short-cut in a balanced tree-structured index to access objects in the subspaces that are more frequently accessed, and propose a new index-view-centric framework for query processing using index-views in a bottom-up manner. We study index-views selection problem in both static and dynamic setting, and we confirm the effectiveness of our approach using large real and synthetic datasets.  相似文献   

11.
We investigate the problem of processing historical queries on a sensor network. Since data is considered to have been already collected at the sensor nodes, the main issue is exploring the spatial component of the query in order to minimize its cost represented by the energy consumption. We assume queries can be issued at any network node, i.e., there is no central base station and all nodes have only local knowledge of the network. On the one hand, a globally optimum query processing plan is desirable but its construction is not possible due to the lack of global knowledge of the network. On the other hand, while a simple network flooding is feasible, it is not a practical choice from a cost perspective. To address this problem we propose a two-phase query processing strategy, where in the first phase a path from the query originator to the query region is found and in the second phase the query is processed within the query region itself. This strategy is supported by analytical models that are used to dynamically select the best processing strategy depending on the query specifics. Our extensive analytical and experimental results show that our analytical models are accurate and that the two-phase strategy is better suited for small to medium sized queries, being up to 10 times more cost effective than a typical network flooding. In addition, the dynamic selection of a query processing technique proved itself capable of always delivering at least as good performance as the most energy efficient strategy for all query sizes. Research supported in part by NSERC Canada.  相似文献   

12.
A multidatabase system (MDBS) integrates information from multiple autonomous local databases. Performing global query optimization to achieve efficient query processing in such a system is challenging due to local autonomy of the data sources. Dynamic factors in the environment make the problem even more difficult. In this paper, we present two techniques, i.e., contention space partitioning and cost error controlling, to perform global query optimization in a dynamic MDBS. Both techniques generate an execution plan with multiple versions for a query in a dynamic MDBS, utilizing the multistate cost models built for the dynamic environment via our previous multistate query sampling method. The first technique partitions the contention space of a dynamic multidatabase environment into a given number of subspaces and chooses a good query execution plan version for each subspace, while the second technique selects a set of execution plan versions by using a given error tolerance to control query execution costs. Experiments demonstrate that the proposed techniques are quite promising for performing global query optimization in a dynamic MDBS. Compared with related work on dynamic query optimization, our approach has an advantage of avoiding the high overhead for modifying or re-generating an execution plan for a query based on dynamic runtime information. Research was supported by the US National Science Foundation under Grant # IIS-9811980 and The University of Michigan.  相似文献   

13.
Searching in a dataset for elements that are similar to a given query element is a core problem in applications that manage complex data, and has been aided by metric access methods (MAMs). A growing number of applications require indices that must be built faster and repeatedly, also providing faster response for similarity queries. The increase in the main memory capacity and its lowering costs also motivate using memory-based MAMs. In this paper, we propose the Onion-tree, a new and robust dynamic memory-based MAM that slices the metric space into disjoint subspaces to provide quick indexing of complex data. It introduces three major characteristics: (i) a partitioning method that controls the number of disjoint subspaces generated at each node; (ii) a replacement technique that can change the leaf node pivots in insertion operations; and (iii) range and k-NN extended query algorithms to support the new partitioning method, including a new visit order of the subspaces in k-NN queries. Performance tests with both real-world and synthetic datasets showed that the Onion-tree is very compact. Comparisons of the Onion-tree with the MM-tree and a memory-based version of the Slim-tree showed that the Onion-tree was always faster to build the index. The experiments also showed that the Onion-tree significantly improved range and k-NN query processing performance and was the most efficient MAM, followed by the MM-tree, which in turn outperformed the Slim-tree in almost all the tests.  相似文献   

14.
Buffer queries   总被引:2,自引:0,他引:2  
A class of commonly asked queries in a spatial database is known as buffer queries. An example of such a query is to "find house-power line pairs that are within 50 meters of each other." A buffer query involves two spatial data sets and a distance d. The answer to this query are pairs of objects, one from each input set, that are within distance d of each other. Given nonpoint spatial objects, evaluation of buffer queries could be a costly operation, even when the numbers of objects in the input data sets are relatively small. This paper addresses the problem of how to evaluate this class of queries efficiently. A fundamental problem with buffer query evaluation is to find an efficient algorithm for solving the minimum distance (miniDist) problem for lines and regions. An efficient minDist algorithm, which only requires a subsequence of segments from each object to be examined, is derived. Finding a fast minDist algorithm is the first step in evaluating a buffer query efficiently. It is observed that many, and sometimes even most, candidates can be proven in the answer without resorting to the relatively expensive minDist operation. A candidate is first evaluated with a least expensive technique-called O-object filtering. If it fails, a more costly operation, called 1-object filtering, is applied. Finally, if both filterings fail, the most expensive minDist algorithm is invoked. To show the effectiveness of the these techniques, they are incorporated into the well-known tree join algorithm and tested with real-life as well as artificial data sets. Extensive experiments show that the proposed algorithm outperforms existing techniques by a wide margin in both execution time as well as IO accesses. More importantly, the performance gain improves drastically with the increase of distance values.  相似文献   

15.
Advanced application domains such as computer-aided design, computer-aided software engineering, and office automation are characterized by their need to store, retrieve, and manage large quantities of data having complex structures. A number of object-oriented database management systems (OODBMS) are currently available that can effectively capture and process the complex data. The existing implementations of OODBMS outperform relational systems by maintaining and querying cross-references among related objects. However, the existing OODBMS still do not meet the efficiency requirements of advanced applications that require the execution of complex queries involving the retrieval of a large number of data objects and relationships among them. Parallel execution can significantly improve the performance of complex OO queries. In this paper, we analyze the performance of parallel OO query processing algorithms for various benchmark application domains. The application domains are characterized by specific mixes of queries of different semantic complexities. The performance of the application domains has been analyzed for various system and data parameters by running parallel programs on a 32-node transputer based parallel machine developed at the IBM Research Center at Yorktown Heights. The parallel processing algorithms, data routing techniques, and query management and control strategies have been implemented to obtain accurate estimation of controlling and processing overheads. However, generation of large complex databases for the study was impractical. Hence, the data used in the simulation have been parameterized. The parallel OO query processing algorithms analyzed in this study are based on a query graph approach rather than the traditional query tree approach. Using the query graph approach, a query is processed by simultaneously initiating the execution at several object classes, thereby, improving the parallelism. During processing, the algorithms avoid the execution of time-consuming join operations by making use of the object references among the objects. Further, the algorithms do not generate any temporary data, thereby, reducing disk accesses. This is accomplished by marking the selected objects and by employing a two-phase query processing strategy.  相似文献   

16.
Skyline查询处理   总被引:7,自引:1,他引:7  
魏小娟  杨婧  李翠平  陈红 《软件学报》2008,19(6):1386-1400
对目前的Skyline查询方法进行分类和综述.首先介绍Skyline查询处理问题产生的背景,然后介绍Skyline查询处理的内存算法,并从带索引和不带索引两个方面对现有的外存Skyline查询处理方法进行分类介绍,在每组算法后,都对该组算法进行了性能评价,然后介绍不同子空间上的多SKyline查询处理模型——SKYCUBE的概念和相关研究.另外,还介绍了不同应用环境下解决Skyline查询处理的策略以及Skyline查询处理问题的扩展,最后归结出Skyline查询处理后续研究的几个方向.  相似文献   

17.
Reverse nearest neighbor (RNN) search is very crucial in many real applications. In particular, given a database and a query object, an RNN query retrieves all the data objects in the database that have the query object as their nearest neighbors. Often, due to limitation of measurement devices, environmental disturbance, or characteristics of applications (for example, monitoring moving objects), data obtained from the real world are uncertain (imprecise). Therefore, previous approaches proposed for answering an RNN query over exact (precise) database cannot be directly applied to the uncertain scenario. In this paper, we re-define the RNN query in the context of uncertain databases, namely probabilistic reverse nearest neighbor (PRNN) query, which obtains data objects with probabilities of being RNNs greater than or equal to a user-specified threshold. Since the retrieval of a PRNN query requires accessing all the objects in the database, which is quite costly, we also propose an effective pruning method, called geometric pruning (GP), that significantly reduces the PRNN search space yet without introducing any false dismissals. Furthermore, we present an efficient PRNN query procedure that seamlessly integrates our pruning method. Extensive experiments have demonstrated the efficiency and effectiveness of our proposed GP-based PRNN query processing approach, under various experimental settings.  相似文献   

18.
The unpredictable nature of irregular memory accesses in a mixed memory applications such as deep learning application poses many challenges due to the communication issues. Typically, a multi-GPU node that has a large number of simultaneous memory requests consumes almost 80% of the processing time for memory mapping. This calls for characterization of mixed regular and irregular memory accesses so that memory divergence can be simplified to improve performance. In this paper, using large deviations principle, it is shown that the mixed regular and irregular memory accesses can be viewed as a combination of continuous and discrete functions. This view point is proved to give better performance through characterization of memory divergence in multi-GPU node using the sub-additivity property. Further, a detection test procedure based on quenched large deviations model is proposed which generates threshold values for optimizing the memory mapping in data intensive applications and hence it will improve the performance.  相似文献   

19.
The interest for multimedia database management systems has grown rapidly due to the need for the storage of huge volumes of multimedia data in computer systems. An important building block of a multimedia database system is the query processor, and a query optimizer embedded to the query processor is needed to answer user queries efficiently. Query optimization problem has been widely studied for conventional database systems; however it is a new research area for multimedia database systems. Due to the differences in query processing strategies, query optimization techniques used in multimedia database systems are different from those used in traditional databases. In this paper, a query optimization strategy is proposed for processing spatio-temporal queries in video database systems. The proposed strategy includes reordering algorithms to be applied on query execution tree. The performance results obtained by testing the reordering algorithms on different query sets are also presented.  相似文献   

20.
In this paper, we present a federated query processing approach to evaluate queries on an Object-Oriented (OO) federated database. This approach has been designed and implemented in the OO-Myriad project, which is an OO extension to the Myriad FDBS researchmyriad:94. Since data integration is performed as part of federated query processing, we have proposed outerjoin, outer-difference and generalized attribute derivation operations together with the traditional relational operations, to be used for integration purposes. To define an OO federated database as a virtual view on multiple OO export databases, we adopt a database mapping strategy that systematically derives each of the class extents, deep class extents and relationships of the federated database using an operator tree consisting of the integration operations. By augmenting federated database queries with this algebraic mapping information, query execution plans can be generated. Based on the original Myriad query processing framework, we have realized the proposed OO federated query processing approach in the OO-Myriad prototype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号