首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper addresses the trajectory tracking control of a nonholonomic wheeled mobile manipulator with parameter uncertainties and disturbances. The proposed algorithm adopts a robust adaptive control strategy where parametric uncertainties are compensated by adaptive update techniques and the disturbances are suppressed. A kinematic controller is first designed to make the robot follow a desired end-effector and platform trajectories in task space coordinates simultaneously. Then, an adaptive control scheme is proposed, which ensures that the trajectories are accurately tracked even in the presence of external disturbances and uncertainties. The system stability and the convergence of tracking errors to zero are rigorously proven using Lyapunov theory. Simulations results are given to illustrate the effectiveness of the proposed robust adaptive control law in comparison with a sliding mode controller.  相似文献   

2.
The trajectory tracking control problem of dynamic nonholonomic wheeled mobile robots is considered via visual servoing feedback.A kinematic controller is firstly presented for the kinematic model,and ...  相似文献   

3.
The trajectory tracking control problem of dynamic nonholonomic wheeled mobile robots is considered via visual servoing feedback. A kinematic controller is firstly presented for the kinematic model, and then, an adaptive sliding mode controller is designed for the uncertain dynamic model in the presence of parametric uncertainties associated with the camera system. The proposed controller is robust not only to structured uncertainties such as mass variation but also to unstructured one such as disturbances. The asymptotic convergence of tracking errors to equilibrium point is rigorously proved by the Lyapunov method. Simulation results are provided to illustrate the performance of the control law.  相似文献   

4.
针对含运动学未知参数以及动力学模型不确定的非完整轮式移动机器人轨迹跟踪问题,基于Radical Basis Function(径向基函数)神经网络,提出了一种鲁棒自适应控制器.首先,考虑移动机器人运动学参数未知的情况,提出了一种含自适应参数的运动学控制器,用以补偿参数不确定性导致的系统误差;其次,利用神经网络控制技术,对于机器人在移动中动力学模型不确定问题,提出了一种具有鲁棒性的动力学控制器,使得移动机器人可以在不知道具体动力学模型的情况下跟踪到目标轨迹;最后利用Lyapunov稳定性理论证明了整个系统的稳定性.通过数值仿真验证了所设计的控制器的可行性.  相似文献   

5.
In this paper, the integrated kinematic and dynamic trajectory tracking control problem of wheeled mobile robots (WMRs) is addressed. An adaptive robust tracking controller for WMRs is proposed to cope with both parametric and nonparametric uncertainties in the robot model. At first, an adaptive nonlinear control law is designed based on input–output feedback linearization technique to get asymptotically exact cancellation of the parametric uncertainty in the WMR parameters. The designed adaptive feedback linearizing controller is modified by two methods to increase the robustness of the controller: (1) a leakage modification is applied to modify the integral action of the adaptation law and (2) the second modification is an adaptive robust controller, which is included to the linear control law in the outer loop of the adaptive feedback linearizing controller. The adaptive robust controller is designed such that it estimates the unknown constants of an upper bounding function of the uncertainty due to friction, disturbances and unmodeled dynamics. Finally, the proposed controller is developed for a type (2, 0) WMR and simulations are carried out to illustrate the robustness and tracking performance of the controller.  相似文献   

6.

In this paper, an adaptive terminal sliding mode control scheme for an omnidirectional mobile robot is proposed as a robust solution to the trajectory tracking control problem. The omnidirectional mobile robot has a double-frame structure, which adsorbes on the aircraft surface by suction cups. The major difficulties lie in the existence of nonholonomic constraints, system uncertainty and external disturbance. To overcome these difficulties, the kinematic model is established, the dynamic model is derived by using Lagrange method. Then, a robust adaptive terminal sliding mode (RATSM) control scheme is proposed to solve the problem of state stabilization and trajectory tracking. In order to enhance the robustness of the system, an adaptive online estimation law is designed to overcome the total uncertainty. Subsequently, the asymptotic stability of the system without total uncertainty is proved with basis on Lyapunov theory, and the system considering total uncertainty can converge to the domain containing the origin. Simulation results are given to show the verification and validation of the proposed control scheme.

  相似文献   

7.
This paper studies the precision motion trajectory tracking control of a pneumatic cylinder driven by a proportional-directional control valve. An integrated direct/indirect adaptive robust controller is proposed. The controller employs a physical model based indirect-type parameter estimation to obtain reliable estimates of unknown model parameters, and utilises a robust control method with dynamic compensation type fast adaptation to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Due to the use of projection mapping, the robust control law and the parameter adaption algorithm can be designed separately. Since the system model uncertainties are unmatched, the recursive backstepping technology is adopted to design the robust control law. Extensive comparative experimental results are presented to illustrate the effectiveness of the proposed controller and its performance robustness to parameter variations and sudden disturbances.  相似文献   

8.
针对模型参数未知和存在有界干扰的非完整移动机器人的轨迹跟踪控制问题,本文提出了一种鲁棒自适应轨迹跟踪控制器方法.非完整移动机器人的控制难点在于它的运动学系统是欠驱动的.针对这一难点,本文利用横截函数的思想,引入新的辅助控制器,使得非完整移动机器人系统不再是一个欠驱动系统,缩减了控制器设计的难度,进而利用非线性自适应算法和参数映射方法构造李雅谱诺夫函数.通过李雅普诺夫方法设计控制器和参数自适应器,从而使得非完整移动机器人的跟随误差任意小,即可以任意小的误差来跟随任意给定的参考轨迹.仿真结果证明了方法的有效性.  相似文献   

9.
林常青  宗群 《控制工程》2012,19(1):119-122,135
针对临近空间飞行器中未知的执行器控制效益损失和漂移故障,提出了一种模型参考滑模容错控制方法,保证故障系统对参考模型的稳定跟踪性能。利用跟踪误差系统设计容错控制器,首先构造积分滑模面,以增强系统鲁棒性并消除稳态误差;随后,在无需故障诊断单元的条件下设计模型参考滑模控制律,使其增益能实现自适应调节以处理未知故障影响,其中自适应律基于李雅普诺夫稳定性理论设计,保证闭环系统稳定。在临近空间飞行器纵向动力学模型上的仿真验证表明,该方法能处理执行器中发动机节流阀调节通道和升降舵偏转量通道的不同故障,保证系统获得满意的鲁棒容错跟踪性能。  相似文献   

10.
Hydraulically actuated robotic mechanisms are becoming popular for field robotic applications for their compact design and large output power. However, they exhibit nonlinearity, parameter variation and flattery delay in the response. This flattery delay, which often causes poor trajectory tracking performance of the robot, is possibly caused by the dead zone of the proportional electromagnetic control valves and the delay associated with oil flow. In this investigation, we have proposed a trajectory tracking control system for hydraulically actuated robotic mechanism that diminishes the flattery delay in the output response. The proposed controller consists of a robust adaptive fuzzy controller with self-tuned adaptation gain in the feedback loop to cope with the parameter variation and disturbances and a one-step-ahead fuzzy controller in the feed-forward loop for hydraulic dead zone pre-compensation. The adaptation law of the feedback controller has been designed by Lyapunov synthesis method and its adaptation rate is varied by fuzzy self-tuning. The variable adaptation rate helps to improve the tracking performance without sacrificing the stability. The proposed control technique has been applied for locomotion control of a hydraulically actuated hexapod robot under independent joint control framework. For tracking performance of the proposed controller has also been compared with classical PID controller, LQG state feedback controller and static fuzzy controller. The experimental results exhibit a very accurate foot trajectory tracking with very small tracking error with the proposed controller.  相似文献   

11.
为解决四旋翼无人机在饱和输入下的轨迹跟踪控制问题,同时兼顾系统存在的参数不确定性和外部风力扰动影响,设计了一种改进的抗干扰自适应鲁棒滑模控制方法;基于六自由度架构,设计四旋翼无人机简化的系统模型,进而降低控制器设计的复杂程度;引入带有误差信号的滑模函数,设计带有误差信号的饱和补偿自适应控制律,同时增加鲁棒控制项,降低由于饱和输入问题带来的抖振影响,并减小参数不确定和外部风力扰动对系统稳定性的影响;系统模型与抗干扰自适应控制律相结合,形成了改进的抗干扰自适应鲁棒滑模控制策略,实现四旋翼无人机的位置轨迹和姿态轨迹的稳定跟踪;最后通过数值仿真与传统PD控制算法进行仿真比较,验证控制方法的有效性和优越性。  相似文献   

12.
The ever increasingly stringent performance requirements of industrial robotic applications highlight significant importance of advanced robust control designs for serial robots that are generally subject to various uncertainties and external disturbances. Therefore, this paper proposes and investigates the design and implementation of a robust adaptive fuzzy sliding mode controller in the task space for uncertain serial robotic manipulators. The sliding mode control is well known for its robustness to system parameter variations and external disturbances, and is thus a highly desirable and cost-effective approach to achieve high precision control task for serial robots. The proposed controller is designed based on a fuzzy logic approximation to accomplish trajectory tracking with high accuracy and simultaneously attenuate effects from uncertainties. In the controller, the high-frequency uncertain term is approximated by using a fuzzy logic system while the low-frequency term is adaptively updated in real time based on a parametric adaption law. The control efficacy and effectiveness of the proposed control algorithm are comparatively verified against a recently proposed conventional controller. The test results demonstrate that the proposed controller has better trajectory tracking performances and is more robust against large disturbances than the conventional controller under the same operating conditions.  相似文献   

13.
针对参数不确定的自动引导车的运动控制问题,应用Backstepping方法设计自适应控制器,并运用Lyapunov稳定性理论与Barbalat定理证明了系统的稳定性;同时利用进化规划算法优化控制器参数,通过跟踪微分器对输入信号与虚拟控制信号进行滤波处理并提取微分信号,避免了对虚拟控制信号的解析求导,简化了控制器的设计过程。与传统PID控制的对比仿真结果表明,所提出的自适应控制策略能较好地补偿系统参数摄动的影响,提高了自动引导车的轨迹跟踪性能和鲁棒性。  相似文献   

14.
主旋翼升力和机身姿态受限的模型直升机非线性控制   总被引:2,自引:0,他引:2  
诸兵  霍伟 《自动化学报》2014,40(11):2654-2664
针对主旋翼升力和机身姿态受限的6自由度模型无人直升机的轨迹跟踪控制问题设计了一种非线性控制器.在控制器设计过程中,直升机的数学模型被简化为三个子系统: 姿态子系统,纵-侧向子系统和高度子系统,所设计的控制器由针对这三个子系统的子控制器组成.纵-侧向和高度子控制器基于双曲正切函数进行设计,以保证满足受限条件; 姿态子控制器利用反步法设计,使得机身姿态能够跟踪纵-侧向和高度子系统的虚拟控制.本文在理论上证明了闭环系统跟踪误差最终有界,并且控制器满足受限条件.仿真结果证实了所设计控制器的性能.  相似文献   

15.
A nonlinear control is proposed for trajectory tracking of a 6-DOF model-scaled helicopter with constraints on main rotor thrust and fuselage attitude. In the procedure of control design, the mathematical model of helicopter is simplified into three subsystems: altitude subsystem, longitudinal-lateral subsystem and attitude subsystem. The proposed control is developed by combining the sub-controls for the corresponding subsystems. The sub-controls for altitude subsystem and longitudinal-lateral subsystem are designed with hyperbolic tangent functions to satisfy the constraints; the sub-control for attitude subsystem is based on backstepping technique such that fuselage attitude tracks the virtual control for longitudinallateral subsystem. It is proved theoretically that tracking errors are ultimately bounded, and control constraints are satisfied.Performances of the proposed controller are demonstrated by simulation results.  相似文献   

16.
This paper deals with the synchronized motion trajectory tracking control problem of multiple pneumatic cylinders. An adaptive robust synchronization controller is developed by incorporating the cross‐coupling technology into the integrated direct/indirect adaptive robust control (DIARC) architecture. The position synchronization error and the trajectory tracking error of each cylinder are combined to construct the so‐called coupled position error. The proposed adaptive robust synchronization controller is designed with the feedback of this coupled position error and is composed of two parts: an on‐line parameter estimation algorithm and a robust control law. The former is employed to obtain accurate estimates of model parameters for reducing the extent of parametric uncertainties, while the latter is utilized to attenuate the effects of parameter estimation errors, unmodelled dynamics, and external disturbances. Theoretically, both the position synchronization and trajectory tracking errors will achieve asymptotic convergence simultaneously. Moreover, the effectiveness of the proposed controller is verified by the extensive experimental results performed on a two‐cylinder pneumatic system.  相似文献   

17.
针对非线性不确定机器人系统的轨迹跟踪控制问题,提出一种鲁棒自适应PID控制算法.该控制器由主控制器和监督控制器组成.主控制器以常规PID控制为基础,基于滑模控制思想设计PID参数的自适应律,根据误差实时修正PID参数.基于Lyapunov函数设计的监督控制器补偿自适应PID控制器与理想控制器之间的差异,使系统具有设定的H_∞的跟踪性能.最后,两关节机器人的仿真实验结果表明了算法的有效性.
Abstract:
A robust adaptive PID control algorithm is proposed for trajectory tracking of robot manipulators with nonlinear uncertainties.The controller is composed of a main controller and a supervisory controller.The main controller is designed based on the traditional PID controller.The parameters of the PID controller are updated online according to the system running errors with the adaptation law based on the sliding mode control.The supervisory controller is proposed to compensate the error between the adaptive PID controller and the ideal controller in the sense of the Lyapunov function with the specified H_∞ tracking performance.Finally, the simulation results based on a two-joint robot manipulator show the effectiveness of the presented controller.  相似文献   

18.
We investigate motion synchronization of dual-cylinder pneumatic servo systems and develop an adaptive robust synchronization controller. The proposed controller incorporates the cross-coupling technology into the integrated direct/indirect adaptive robust control (DIARC) architecture by feeding back the coupled position errors, which are formed by the trajectory tracking errors of two cylinders and the synchronization error between them. The controller employs an online recursive least squares estimation algorithm to obtain accurate estimates of model parameters for reducing the extent of parametric uncertainties, and uses a robust control law to attenuate the effects of parameter estimation errors, unmodeled dynamics, and disturbances. Therefore, asymptotic convergence to zero of both trajectory tracking and synchronization errors can be guaranteed. Experimental results verify the effectiveness of the proposed controller.  相似文献   

19.
In this paper, a robust tracking controller is proposed for the trajectory tracking problem of a dual‐arm wheeled mobile manipulator subject to some modeling uncertainties and external disturbances. Based on backstepping techniques, the design procedure is divided into two levels. In the kinematic level, the auxiliary velocity commands for each subsystem are first presented. A sliding‐mode equivalent controller, composed of neural network control, robust scheme and proportional control, is constructed in the dynamic level to deal with the dynamic effect. To deal with inadequate modeling and parameter uncertainties, the neural network controller is used to mimic the sliding‐mode equivalent control law; the robust controller is designed to compensate for the approximation error and to incorporate the system dynamics into the sliding manifold. The proportional controller is added to improve the system's transient performance, which may be degraded by the neural network's random initialization. All the parameter adjustment rules for the proposed controller are derived from the Lyapunov stability theory and e‐modification such that uniform ultimate boundedness (UUB) can be assured. A comparative simulation study with different controllers is included to illustrate the effectiveness of the proposed method.  相似文献   

20.
In this paper, a stable adaptive fuzzy-based tracking control is developed for robot systems with parameter uncertainties and external disturbance. First, a fuzzy logic system is introduced to approximate the unknown robotic dynamics by using adaptive algorithm. Next, the effect of system uncertainties and external disturbance is removed by employing an integral sliding mode control algorithm. Consequently, a hybrid fuzzy adaptive robust controller is developed such that the resulting closed-loop robot system is stable and the trajectory tracking performance is guaranteed. The proposed controller is appropriate for the robust tracking of robotic systems with system uncertainties. The validity of the control scheme is shown by computer simulation of a two-link robotic manipulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号