首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A linear parameter-varying (LPV) model-based synthesis, tuning and assessment methodology is developed and applied for the design of a robust fault detection and diagnosis (FDD) system for several types of flight actuator faults such as jamming, runaway, oscillatory failure, or loss of efficiency. The robust fault detection is achieved by using a synthesis approach based on an accurate approximation of the nonlinear actuator–control surface dynamics via an LPV model and an optimal tuning of the free parameters of the FDD system using multi-objective optimization techniques. Real-time signal processing is employed for identification of different fault types. The assessment of the FDD system robustness has been performed using both standard Monte-Carlo methods as well as advanced worst-case search based optimization-driven robustness analysis. A supplementary industrial validation performed on the AIRBUS actuator test bench for the monitoring of jamming, confirmed the satisfactory performance of the FDD system in a true industrial setting.  相似文献   

2.
This paper proposes two novel stable fuzzy model predictive controllers based on piecewise Lyapunov functions and the min-max optimization of a quasi-worst case infinite horizon objective function. The main idea is to design state feedback control laws that minimize the worst case objective function based on fuzzy model prediction, and thus to obtain the optimal transient control performance, which is of great importance in industrial process control. Moreover, in both of these predictive controllers, piecewise Lyapunov functions have been used in order to reduce the conservatism of those existent predictive controllers based on common Lyapunov functions. It is shown that the asymptotic stability of the resulting closed-loop discrete-time fuzzy predictive control systems can be established by solving a set of linear matrix inequalities. Moreover, the controller designs of the closed-loop control systems with desired decay rate and input constraints are also considered. Simulations on a numerical example and a highly nonlinear benchmark system are presented to demonstrate the performance of the proposed fuzzy predictive controllers.  相似文献   

3.
This paper suggests a synergy of fuzzy logic and nature-inspired optimization in terms of the nature-inspired optimal tuning of the input membership functions of a class of Takagi-Sugeno-Kang (TSK) fuzzy models dedicated to Anti-lock Braking Systems (ABSs). A set of TSK fuzzy models is proposed by a novel fuzzy modeling approach for ABSs. The fuzzy modeling approach starts with the derivation of a set of local state-space models of the nonlinear ABS process by the linearization of the first-principle process model at ten operating points. The TSK fuzzy model structure and the initial TSK fuzzy models are obtained by the modal equivalence principle in terms of placing the local state-space models in the rule consequents of the TSK fuzzy models. An operating point selection algorithm to guide modeling is proposed, formulated on the basis of ranking the operating points according to their importance factors, and inserted in the third step of the fuzzy modeling approach. The optimization problems are defined such that to minimize the objective functions expressed as the average of squared modeling errors over the time horizon, and the variables of these functions are a part of the parameters of the input membership functions. Two representative nature-inspired algorithms, namely a Simulated Annealing (SA) algorithm and a Particle Swarm Optimization (PSO) algorithm, are implemented to solve the optimization problems and to obtain optimal TSK fuzzy models. The validation and the comparison of SA and PSO and of the new TSK fuzzy models are carried out for an ABS laboratory equipment. The real-time experimental results highlight that the optimized TSK fuzzy models are simple and consistent with both training data and validation data and that these models outperform the initial TSK fuzzy models.  相似文献   

4.
In modern industry, detecting incipient faults timely is of vital importance to prevent serious system performance deterioration and ensure optimal process operation. Recently, multivariate statistical process monitoring (MSPM) techniques have been extensively studied and widely applied to modern industrial systems. However, conventional fault detection indices utilized in statistical process monitoring are not sensitive to incipient faults with small magnitude. In this paper, by introducing two representative smoothing techniques, novel incipient fault detection strategies based on a generic fault detection index in MSPM are proposed. Fault detectability for each proposed strategy is analyzed. In addition, the effects of the smoothing parameters on fault detection, including advantages and disadvantages, are also investigated. Finally, case studies on a numerical example and two practical industrial processes are carried out to demonstrate the effectiveness of the proposed incipient fault detection strategies.  相似文献   

5.
Modern process plants are highly integrated and as a result, decentralized PID control loops are often strongly interactive. The iterative SISO tuning approach currently used in industry is not only time consuming, but does also not achieve optimal performance of the inherently multivariable control system. This paper describes a method and a software tool that allows control engineers/technicians to calculate optimal PID controller settings for multi-loop process systems. It requires the identification of a full dynamic model of the multivariable system, and uses constrained nonlinear optimization techniques to find the controller parameters. The solution is tailored to the specific control system and PID algorithm to be used. The methodology has been successfully applied in many industrial advanced control projects. The tuning results that have been achieved for interacting PID control loops in the stabilizing section of an industrial Gasoline Treatment Unit as well as a Diesel Desulfurization plant are presented.  相似文献   

6.
Most controllers optimization and design problems are multiobjective in nature, since they normally have several (possibly conflicting) objectives that must be satisfied at the same time. Instead of aiming at finding a single solution, the multiobjective optimization methods try to produce a set of good trade-off solutions from which the decision maker may select one. Several methods have been devised for solving multiobjective optimization problems in control systems field. Traditionally, classical optimization algorithms based on nonlinear programming or optimal control theories are applied to obtain the solution of such problems. The presence of multiple objectives in a problem usually gives rise to a set of optimal solutions, largely known as Pareto-optimal solutions. Recently, Multiobjective Evolutionary Algorithms (MOEAs) have been applied to control systems problems. Compared with mathematical programming, MOEAs are very suitable to solve multiobjective optimization problems, because they deal simultaneously with a set of solutions and find a number of Pareto optimal solutions in a single run of algorithm. Starting from a set of initial solutions, MOEAs use iteratively improving optimization techniques to find the optimal solutions. In every iterative progress, MOEAs favor population-based Pareto dominance as a measure of fitness. In the MOEAs context, the Non-dominated Sorting Genetic Algorithm (NSGA-II) has been successfully applied to solving many multiobjective problems. This paper presents the design and the tuning of two PID (Proportional–Integral–Derivative) controllers through the NSGA-II approach. Simulation numerical results of multivariable PID control and convergence of the NSGA-II is presented and discussed with application in a robotic manipulator of two-degree-of-freedom. The proposed optimization method based on NSGA-II offers an effective way to implement simple but robust solutions providing a good reference tracking performance in closed loop.  相似文献   

7.
Feedback controllers with specific structure arise frequently in applications because they are easily apprehended by design engineers and facilitate on‐board implementations and re‐tuning. This work is dedicated to H synthesis with structured controllers. In this context, straightforward application of traditional synthesis techniques fails, which explains why only a few ad hoc methods have been developed over the years. In response, we propose a more systematic way to design H optimal controllers with fixed structure using local optimization techniques. Our approach addresses in principle all those controller structures which can be built into mathematical programming constraints. We apply non‐smooth optimization techniques to compute locally optimal solutions, and provide practical tests for descent and optimality. In the experimental part we apply our technique to H loop‐shaping proportional integral derivative (PID) controllers for MIMO systems and demonstrate its use for PID control of a chemical process. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The performance of the fuzzy controllers depends highly on the proper selection of some design parameters which is usually tuned iteratively via a trial and error process based primarily on engineering intuition. With the recent developments in the area of global optimization, it has been made possible to obtain the optimal values of the design parameters systematically. Nevertheless, it is well known that unless a priori knowledge is available about the optimization search-domain, most of the available time-domain objective functions may result in undesirable solutions. It is consequently important to provide guidelines on how these parameters affect the closed-loop behavior. As a result, some alternative objective functions are presented for the time-domain optimization of the fuzzy controllers, and the design parameters of a PID-type fuzzy controller are tuned by using the proposed time-domain objective functions. Finally, the real-time application of the optimal PID-type fuzzy controller is investigated on the robust stabilization of a laboratory active magnetic bearing system. The experimental results show that the designed PID-type fuzzy controllers provide much superior performances than the linear on-board controllers while retaining lower profiles of control signals.  相似文献   

9.
This paper presents a unified fault isolation scheme for handling both process faults and sensor faults in a class of uncertain nonlinear systems. The proposed fault diagnosis architecture consists of a fault detection estimator and a bank of isolation estimators, each corresponding to a particular fault type. The design of the fault isolation decision scheme is based on the derivation of appropriate adaptive thresholds for each fault isolation estimator. Fault isolability conditions characterizing the class of process faults and sensor faults that are isolable by the proposed scheme are derived. A rigorous isolability analysis is presented via the use of the so-called fault mismatch functions, which are defined between pairs of possible faults. A simulation example is used to illustrate the proposed fault isolation scheme.  相似文献   

10.
This paper develops a method to tune fuzzy controllers using numerical optimization. The main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve global performance requirements. Furthermore, this approach allows design constraints to be implemented during the tuning process. The method tunes the controller by parameterizing the membership functions for error, change-in-error, and control output. The resulting parameters form a design vector which is iteratively changed to minimize an objective function. The minimal objective function results in an optimal performance of the system. A spacecraft mounted science payload line-of-sight pointing control is used to demonstrate results.  相似文献   

11.
In this paper, a new strategy for fault‐tolerant control system design has been proposed using multiple controllers. The design of such controllers is shown to be unique in the sense that the resulting control system neither suffers from the problem of conservativeness of conventional passive fault‐tolerant control nor from the risk of instability associated with active fault‐tolerant control in case that an incorrect fault detection and isolation decision is made. In other words, the stability of the closed‐loop system is always ensured regardless of the decision made by the fault detection and isolation scheme. A correct decision will further lead to optimal performance of the closed‐loop system. This paper deals with the conflicting requirements among stability, redundancy, and graceful degradation in performance for fault‐tolerant control systems by using robust control techniques. A detailed design procedure has been presented with consideration of parameter uncertainties. Both total and partial actuator failures have been considered. This new control strategy has been demonstrated by controlling a McDonnell F‐4C airplane in the lateral‐direction through simulation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a distributed integrated fault diagnosis and accommodation scheme for leader‐following formation control of a class of nonlinear uncertain second‐order multi‐agent systems. The fault model under consideration includes both process and actuator faults, which may evolve abruptly or incipiently. The time‐varying leader communicates with a small subset of follower agents, and each follower agent communicates to its directly connected neighbors through a bidirectional network with possibly asymmetric weights. A local fault diagnosis and accommodation component are designed for each agent in the distributed system, which consists of a fault detection and isolation module and a reconfigurable controller module comprised of a baseline controller and two adaptive fault‐tolerant controllers, activated after fault detection and after fault isolation, respectively. By using appropriately the designed Lyapunov functions, the closed‐loop stability and asymptotic convergence properties of the leader‐follower formation are rigorously established under different modes of the fault‐tolerant control system.  相似文献   

13.
Proposes a recurrent learning algorithm for designing the controllers of continuous dynamical systems in optimal control problems. The controllers are in the form of unfolded recurrent neural nets embedded with physical laws from classical control techniques. The learning algorithm is characterized by a double forward-recurrent-loops structure for solving both temporal recurrent and structure recurrent problems. The first problem results from the nature of general optimal control problems, where the objective functions are often related to (evaluated at) some specific time steps or system states only, causing missing learning signals at some steps or states. The second problem is due to the high-order discretization of continuous systems by the Runge-Kutta method that we perform to increase accuracy. This discretization transforms the system into several identical interconnected subnetworks, like a recurrent neural net expanded in the time axis. Two recurrent learning algorithms with different convergence properties are derived; first- and second-order learning algorithms. Their computations are local and performed efficiently as net signal propagation. We also propose two new nonlinear control structures for the 2D guidance problem and the optimal PI control problem. Under the training of the recurrent learning algorithms, these controllers can be easily tuned to be suboptimal for given objective functions. Extensive computer simulations show the controllers' optimization and generalization abilities  相似文献   

14.
In this paper, an optimal gain tuning method for PID controllers is proposed using a novel combination of a simplified Ant Colony Optimization algorithm and Nelder–Mead method (ACO-NM) including a new procedure to constrain NM. To address Proportional-Integral-Derivative (PID) controller tuning for the Automatic Voltage Regulator (AVR) system, this paper presents a meta-analysis of the literature on PID parameter sets solving the AVR problem. The investigation confirms that the proposed ACO-NM obtains better or equivalent PID solutions and exhibits higher computational efficiency than previously published methods. The proposed ACO-NM application is extended to realistic conditions by considering robustness to AVR process parameters, control signal saturation and noisy measurements as well as tuning a two-degree-of-freedom PID controller (2DOF-PID). For this type of PID, a new objective function is also proposed to manage control signal constraints. Finally, real time control experiments confirm the performance of the proposed 2DOF-PIDs in quasi-real conditions. Furthermore, the efficiency of the algorithm is confirmed by comparing its results to other optimization algorithms and NM combinations using benchmark functions.  相似文献   

15.
PID control of MIMO process based on rank niching genetic algorithm   总被引:3,自引:1,他引:2  
Non-linear multiple-input multiple-output (MIMO) processes which are common in industrial plants are characterized by significant interactions and non- linearities among their variables. Thus, tuning several controllers in complex industrial plants is a challenge for process engineers and operators. An approach for adjusting the parameters of n proportional–integral–derivative (PID) controllers based on multiobjective optimization and genetic algorithms (GA) is presented in this paper. A modified genetic algorithm with elitist model and niching method is developed to guarantee a set of solutions (set of PID parameters) with different tradeoffs regarding the multiple requirements of the control performance. Experiments considering a fluid catalytic cracking (FCC) unit, under PI and dynamic matrix control (DMC) are carried out in order to evaluate the proposed method. The results show that the proposed approach is an alternative to classical techniques as Ziegler–Nichols rules and others.  相似文献   

16.
In this paper the author's experience in applying intelligent control in the process industries is discussed. A framework for intelligent control is presented in which intelligent control is defined in a broad sense to include items such as fault detection/isolation, modeling, and optimization. The focus of the paper is on techniques that have proven beneficial in the process industries. Methods utilizing multivariate statistical techniques are presented, with applications to soft sensing, batch process optimization, and fault detection/isolation. Potential problems with closing control loops around soft sensors are also discussed. The second broad technique considered involves model predictive control, and a wastewater application is discussed. Lastly, a brief discussion on expert systems and fuzzy control is presented, and finally a summary is given.  相似文献   

17.
This paper addresses, first, the problem of constraint handling for a system with one input and multiple outputs, where one output must reach a given set point and the other outputs must lie between lower and an upper limits. Three algebraic solutions based on cascade control are outlined. One method employs the traditional cascade controllers, applied to serial transfer functions. The second uses cascade controllers applied to parallel transfer function processes. The latter method shows sensitivity to disturbance and tuning of inner loops. A third innovative method, called a pseudo-cascade controller, is introduced for parallel transfer functions. The new method allows independent tuning of the controllers, and requires no special anti-reset windup feature. An extension is also given for decoupled two-input processes. A simulated example and a distributed control design for an industrial application are given to illustrate the proposed methods.  相似文献   

18.
In this paper, the cooperative adaptive consensus tracking problem for heterogeneous nonlinear multi-agent systems on directed graph is addressed. Each follower is modelled as a general nonlinear system with the unknown and nonidentical nonlinear dynamics, disturbances and actuator failures. Cooperative fault tolerant neural network tracking controllers with online adaptive learning features are proposed to guarantee that all agents synchronise to the trajectory of one leader with bounded adjustable synchronisation errors. With the help of linear quadratic regulator-based optimal design, a graph-dependent Lyapunov proof provides error bounds that depend on the graph topology, one virtual matrix and some design parameters. Of particular interest is that if the control gain is selected appropriately, the proposed control scheme can be implemented in a unified framework no matter whether there are faults or not. Furthermore, the fault detection and isolation are not needed to implement. Finally, a simulation is given to verify the effectiveness of the proposed method.  相似文献   

19.
针对因工业机器人旋转部件故障诊断模型最优参数难以自适应确定导致故障识别率低的问题,提出了一种参数联合优化的VMD-SVM的工业机器人旋转部件故障诊断方法;提出了一种基于遗传变异的改进灰狼算法,该算法采用Logistic混沌映射进行种群初始化,将非线性因子引入位置更新公式,并利用遗传变异策略解决算法陷入局部最优时的停滞现象;基于该算法对VMD和SVM进行参数联合优化;利用参数优化的VMD对故障信号进行分解,对所得的本征模态函数计算改进样本熵以构成特征向量,再输入至参数优化的SVM完成工业机器人旋转部件的故障诊断;仿真和实验结果表明,本文方法能够准确地进行故障诊断,在信号无噪和含噪的条件下准确率最高均达100%,较EMD、LMD、DTCWT、VMD等四种方法具有更优的指标。  相似文献   

20.
The present paper proposes a novel multi‐objective robust fuzzy fractional order proportional–integral–derivative (PID) controller design for nonlinear hydraulic turbine governing system (HTGS) by using evolutionary computation techniques. The fuzzy fractional order PID (FOPID) controller takes closed loop error and its fractional derivative as inputs and performs fuzzy logic operations. Then, it produces the output through the fractional order integrator. The predominant advantages of the proposed controller are its capability to handle complex nonlinear processes like HTGS in heuristic manner, due to fuzzy incorporation and extending an additional flexibility in tuning the order of fractional derivative/integral terms to enhance the closed loop performance. The present work formulates the optimal tuning problem of fuzzy FOPID controller for HTGS as a multi‐objective one instead of a traditional single‐objective one towards satisfying the conflicting criteria such as less settling time and minimum damped oscillations simultaneously to ensure the improved dynamic performance of HTGS. The multi‐objective evolutionary computation techniques such as non‐dominated sorting genetic algorithm‐II (NSGA‐II) and modified NSGA‐II have been utilized to find the optimal input/output scaling factors of the proposed controller along with the order of fractional derivative/integral terms for HTGS system under no load and load turbulence conditions. The performance of the proposed fuzzy FOPID controller is compared with PID and FOPID controllers. The simulations have been conducted to test the tracking capability and robust performance of HTGS during dynamic set point changes for a wide range of operating conditions and model parameter variations, respectively. The proposed robust fuzzy FOPID controller has ensured better fitness value and better time domain specifications than the PID and FOPID controllers, during optimization towards satisfying the conflicting objectives such as less settling time and minimum damped oscillations simultaneously, due to its special inheritance of fuzzy and FOPID properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号