首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
In this paper a guaranteed equilibrated error estimator is developed for the 3D harmonic magnetodynamic problem of Maxwell’s system. This system is recasted in the classical A?φ potential formulation and solved by the Finite Element method. The error estimator is built starting from the A?φ numerical solution by a local flux reconstruction technique. Its equivalence with the error in the energy norm is established. A comparison of this estimator with an equilibrated error estimator already developed through a complementary problem points out the advantages and drawbacks of these two estimators. In particular, an analytical benchmark test illustrates the obtained theoretical results and a physical benchmark test shows the efficiency of these two estimators.  相似文献   

2.
Inspired by the gradient-based and inversion-free iterations, a new quasi gradient-based inversion-free iterative algorithm is proposed for solving the nonlinear matrix equation X+ATX?nA=I. The convergence proof of the suggested algorithm is given. Several matrix norm inequalities are established to depict the convergence properties of this algorithm. Three numerical examples are given to illustrate the effectiveness of the suggested algorithms.  相似文献   

3.
4.
5.
6.
7.
8.
The construction of finite element approximations in H(div,Ω) usually requires the Piola transformation to map vector polynomials from a master element to vector fields in the elements of a partition of the region Ω. It is known that degradation may occur in convergence order if non affine geometric mappings are used. On this point, we revisit a general procedure for the improvement of two-dimensional flux approximations discussed in a recent paper of this journal (Comput. Math. Appl. 74 (2017) 3283–3295). The starting point is an approximation scheme, which is known to provide L2-errors with accuracy of order k+1 for sufficiently smooth flux functions, and of order r+1 for flux divergence. An example is RTk spaces on quadrilateral meshes, where r=k or k?1 if linear or bilinear geometric isomorphisms are applied. Furthermore, the original space is required to be expressed by a factorization in terms of edge and internal shape flux functions. The goal is to define a hierarchy of enriched flux approximations to reach arbitrary higher orders of divergence accuracy r+n+1 as desired, for any n1. The enriched versions are defined by adding higher degree internal shape functions of the original family of spaces at level k+n, while keeping the original border fluxes at level k. The case n=1 has been discussed in the mentioned publication for two particular examples. General stronger enrichment n>1 shall be analyzed and applied to Darcy’s flow simulations, the global condensed systems to be solved having same dimension and structure of the original scheme.  相似文献   

9.
This paper focuses on the Cauchy problem of the d-dimensional incompressible Oldroyd-B type models for viscoelastic flow with fractional Laplacian dissipation, namely, with (?Δ)η1u and (?Δ)η2τ. For η112+d4, η2>0 and η1+η21+d2, we obtain the global regularity of strong solutions when the initial data (u0,τ0) are sufficiently smooth.  相似文献   

10.
In this paper, we study the fractional Choquard equation
(?Δ)su+u=(|x|?μ1F(u))f(u),inRN,
where N3, 0<s<1, 0<μ<min{N,4s}, and fC(R,R) satisfies the general Berestycki–Lions conditions. Combining constrained variational method with deformation lemma, we obtain a ground state solution of Pohoz?aev type for the above equation. The result improves some ones in Shen et al. (2016).  相似文献   

11.
For the stationary incompressible magnetohydrodynamics (MHD) equations, we provide a new uniqueness assumption (A0) and show the exponential stability of the solution. Then, the semi-implicit time-stepping algorithm is used to solve the stationary MHD equations. The algorithm is proved to be unconditionally stable. The discrete velocity and magnetic field are bounded in L(0,+;L(Ω)) for any space and time step sizes. The error estimates for the algorithm are deduced under the uniqueness conditions. Finally, numerical experiments are performed to testify our theoretical analysis.  相似文献   

12.
We, first, consider the quantum version of the nonlinear Schrödinger equation
iqDq|tu(t,x)+Δu(qt,x)=λ|u(qt,x)|p,t>0,xRN,
where 0<q<1, iq is the principal value of iq, Dq|t is the q-derivative with respect to t, Δ is the Laplacian operator in RN, λ??{0}, p>1, and u(t,x) is a complex-valued function. Sufficient conditions for the nonexistence of global weak solution to the considered equation are obtained under suitable initial data. Next, we study the system of nonlinear coupled equations
iqDq|tu(t,x)+Δu(qt,x)=λ|v(qt,x)|p,t>0,xRN,
iqDq|tv(t,x)+Δv(qt,x)=λ|u(qt,x)|m,t>0,xRN,  相似文献   

13.
14.
This paper is concerned with the following linearly coupled fractional Kirchhoff-type system
a+bR3|(?)α2u|2dx(?)αu+λu=f(u)+γv,inR3,c+dR3|(?)α2v|2dx(?)αv+μv=g(v)+γu,inR3,u,vHα(R3),
where a,c,λ,μ>0, b,d0 are constants, α[34,1) and γ>0 is a coupling parameter. Under the general Berestycki–Lions conditions on the nonlinear terms f and g, we prove the existence of positive vector ground state solutions of Poho?aev type for the above system via variational methods. Moreover, the asymptotic behavior of these solutions as γ0+ is explored as well. Recent results from the literature are generally improved and extended.  相似文献   

15.
In this paper, we prove the existence of multiple solutions for the following Schrödinger–Kirchhoff system involving the fractional p-Laplacian
M?R2N|u(x)?u(y)|p|x?y|N+psdxdy(?Δ)psu+V(x)|u|p?2u=Fu(x,u,v)+λg(x),xRN,M?R2N|v(x)?v(y)|p|x?y|N+psdxdy(?Δ)psu+V(x)|v|p?2v=Fv(x,u,v)+λh(x),xRN,u(x)0,v(x)0,as|x|+,
where (?Δ)ps denotes the fractional p-Laplacian of order s(0,1), 2p<, ps<N, Fu=?F?u, Fv=?F?v, V(x) is allowed to be sign-changing, λ>0 and g,h:RNR is a perturbation. Under some certain assumptions on f, we obtain the existence of multiple solutions for this problem via Ekeland’s variational principle and mountain pass theorem.  相似文献   

16.
The quadratic eigenvalue problem (QEP) (λ2M+λG+K)x=0, with MT=M being positive definite, KT=K being negative definite and GT=?G, is associated with gyroscopic systems. In Guo (2004), a cyclic-reduction-based solvent (CRS) method was proposed to compute all eigenvalues of the above mentioned QEP. Firstly, the problem is converted to find a suitable solvent of the quadratic matrix equation (QME) MX2+GX+K=0. Then using a Cayley transformation and a proper substitution, the QME is transformed into the nonlinear matrix equation (NME) Z+ATZ?1A=Q with A=M+K+G and Q=2(M?K). The problem finally can be solved by applying the CR method to obtain the maximal symmetric positive definite solution of the NME as long as the QEP has no eigenvalues on the imaginary axis or for some cases where the QEP has eigenvalues on the imaginary axis. However, when all eigenvalues of the QEP are far away from or near the origin, the Cayley transformation seems not to be the best one and the convergence rate of the CRS method proposed in Guo (2004) might be further improved. In this paper, inspired by using a doubling algorithm to solve the QME, we use a Möbius transformation instead of the Cayley transformation to present an accelerated CRS (ACRS) method for solving the QEP of gyroscopic systems. In addition, we discuss the selection strategies of optimal parameter for the ACRS method. Numerical results demonstrate the efficiency of our method.  相似文献   

17.
We present both sequential and data parallel approaches to build hierarchical minimum spanning forest (MSF) or tree (MST) in Euclidean space (EMSF/EMST) for applications whose input N points are uniformly or boundedly distributed in Euclidean space. Each iteration of the sequential approach takes O(N) time complexity through combining Borůvka’s algorithm with an improved component-based neighborhood search algorithm, namely sliced spiral search, which is a newly proposed improvement to Bentley’s spiral search for finding a component graph’s closest outgoing point on the plane. It works based on the uniqueness property in Euclidean space, and allows O(1) time complexity for one search from a query point to find the component’s closest outgoing point at different iterations of Borůvka’s algorithm. The data parallel approach includes a newly proposed two-direction breadth-first search (BFS) implementation on graphics processing unit (GPU) platform, which is specialized for selecting a spanning tree’s shortest outgoing edge. This GPU two-direction parallel BFS enables a tree traversal operation to start from any one of its vertex acting as root. These GPU parallel implementations work by assigning N threads with one thread associated to one input point, one thread occupies O(1) local memory and the whole algorithm occupies O(N) global memory. Experiments are conducted on both uniformly distributed data sets and TSPLIB database. We evaluate computation time of the proposed approaches on more than 80 benchmarks with size N growing up to 106 points on personal laptop.  相似文献   

18.
This paper presents a fast singular boundary method (SBM) for three-dimensional (3D) Helmholtz equation. The SBM is a boundary-type meshless method which incorporates the advantages of the boundary element method (BEM) and the method of fundamental solutions (MFS). It is easy-to-program, and attractive to the problems with complex geometries. However, the SBM is usually limited to small-scale problems, because of the operation count of O(N3) with direct solvers or O(N2) with iterative solvers, as well as the memory requirement of O(N2). To overcome this drawback, this study makes the first attempt to employ the precorrected-FFT (PFFT) to accelerate the SBM matrix–vector multiplication at each iteration step of the GMRES for 3D Helmholtz equation. Consequently, the computational complexity can be reduced from O(N2) to O(NlogN) or O(N). Three numerical examples are successfully tested on a desktop computer. The results clearly demonstrate the accuracy and efficiency of the developed fast PFFT-SBM strategy.  相似文献   

19.
This paper considers the nonlinear system of cancer invasion model with haptotaxis effects in a bounded domain Ω?Rn under the homogeneous Neumann and Robin type boundary conditions. This model also includes the growth and decay effects of cancer cells, normal cells and matrix degrading enzymes. This study devoted to estimate the lower bounds for the finite time blow up of non-negative solutions of the given cancer invasion system using first order differential inequality techniques and certain inequalities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号