共查询到20条相似文献,搜索用时 69 毫秒
1.
为了有效求解多目标优化问题,找到分布宽广、均匀的Pareto解集,提出了一个基于空间网格划分的进化算法。将目标空间网格化,利用网格的位置,删除大量被支配个体。在杂交算子中利用了单个目标最优的个体信息,以增加非劣解的宽广性。利用一种新设计的基于最大距离排序的方法删除非劣解集中多余个体。数值实验表明提出的算法是可行有效的。 相似文献
2.
目前,多目标进化算法在众多领域具有极高的应用价值,是优化领域的研究热点之一.分析已有多目标进化算法在保持种群多样性方面的不足并提出一种基于解空间划分的自适应多目标进化算法(space division basedadaptive multiobjective evolutionary algorithm,简称SDA-MOEA)来解决多目标优化问题.该方法首先将多目标优化问题的解空间划分为大量子空间,在算法进化过程中,每个子空间都保留一个非支配解集,以保证种群的多样性.另外,该方法根据每个子空间推进种群前进的距离,自适应地为每个子空间分配进化机会,以提高种群的进化速度.最后,利用3组共14个多目标优化问题检验SDA-MOEA的性能,并将SDA-MOEA与其他5个已有多目标进化算法进行对比分析.实验结果表明:在10个问题上,算法SDA-MOEA显著优于其他对比算法. 相似文献
3.
4.
5.
目前,大多数多目标进化算法采用为单目标优化所设计的重组算子.通过证明或实验分析了几个典型的单目标优化重组算子并不适合某些多目标优化问题.提出了基于分解技术和混合高斯模型的多目标优化算法(multiobjective evolutionary algorithm based on decomposition and mixture Gaussian models,简称MOEA/D-MG).该算法首先采用一个改进的混合高斯模型对群体建模并采样产生新个体,然后利用一个贪婪策略来更新群体.针对具有复杂Pareto前沿的多目标优化问题的测试结果表明,对给定的大多数测试题,该算法具有良好的效果. 相似文献
6.
基于遗传算法求解多目标优化问题Pareto前沿 总被引:7,自引:0,他引:7
该文给出了传统的求解多目标优化方法存在的问题,引入了当前研究多目标优化的新方法———基于遗传算法求解问题的pareto解,讨论了该方法要解决的关键问题———多样性保持及解决策略,并给出了一个求解pareto解集的新算法,算法简单、高效、鲁棒性强。最后给出了实验结果。 相似文献
7.
8.
针对航空公司人员排班问题,提出了一种基于空间划分的进化算法。根据种群个体的分布,结合空间划分思想,对进化算法的编码方式和进化算子进行了改进,并以清洁工排班为例,验证了算法的可行性和优越性,对实际应用提供了良好的参考。 相似文献
9.
10.
11.
多目标进化算法研究进展 总被引:19,自引:0,他引:19
进化算法具有本质上并行、不需要求导或其他辅助知识、一次运行产生多个解和简单易于实现等优点,被视为求解多目标优化问题的有效方法,目前已经形成了各种不同的多目标进化算法(MOEA)。本文首先回顾了多目标进化算法的研究起源,给出了多目标优化问题的数学描述;其次,详细分析了第一代多目标进化算法,其主要特征是简单易于实现,包括NSGA、NPGA、MOGA等,并指出这一代算法研究的成绩与不足;然后,对第二代多目标进化算法作了全面分析,指出其特征是强调效率,以精英保留策略为实现机制,且对SPEA、PAES、NSGAⅡ、NPGA2、PESA、Micro-GA等方法进行分析比较,还对这一代的研究作了总结;最后,对多目标进化算法的研究趋势作了展望和预测。 相似文献
12.
拥挤度距离是一种用于度量解集多样性的指标. 然而, 在许多情况下, 该指标无法有效区分多样性较优个体. 其原因为拥挤度距离主要利用每个位置的局部信息. 为解决该问题, 基于整个种群全局位置信息, 本文设计了基于平均距离聚类的多样性度量指标, 并进一步提出了基于平均距离聚类的NSGA-Ⅱ. 该算法利用平均距离将种群划分为若干个大致均匀分布的小种群, 然后分别在各小种群内执行选择、交叉和变异等操作. 实验结果表明, 本文所提算法可以有效地保持种群多样性. 相似文献
13.
14.
Jih-Jeng Huang Gwo-Hshiung Tzeng Chorng-Shyong Ong 《Expert systems with applications》2006,30(4):739-745
Competence set is widely used to plan the optimal expansion process of skills, abilities or strategies. However, the conventional method is concerned only with one criterion rather than multi-criteria problems. In addition, the crisp value cannot reflect the ambiguity and the uncertainty in practice. In this paper, we propose the fuzzy criteria competence set analysis. In order to obtain Pareto solutions, multi-objective evolutionary algorithm (MOEA) is employed here. A numerical example with two fuzzy criteria is also used to illustrate the proposed method. 相似文献
15.
在高维多目标优化中, 不同的优化问题存在不同形状的Pareto前沿(PF), 而研究表明大多数多目标进化算法(Multi-objective evolutionary algorithms, MOEAs) 在处理不同的优化问题时普适性较差. 为了解决这个问题, 本文提出了一个基于R2指标和参考向量的高维多目标进化算法(An R2 indicator and reference vector based many-objective optimization evolutionary algorithm, R2-RVEA). R2-RVEA基于Pareto支配选取非支配解来指导种群进化, 仅当非支配解的数量超过种群规模时, 算法进一步采用种群分解策略和R2指标选择策略进行多样性管理. 通过大量的实验证明, 本文提出的算法在处理不同形状的PF时具有良好的性能. 相似文献
16.
符号回归以构建一个能拟合给定数据集的函数模型为目的, 是对基本函数、运算符、变量等进行组合优化的过程.本文提出了一种求解符号回归问题的粒子群优化算法.算法以语法树对函数模型进行表达, 采用基因表达式将语法树编码为一个粒子, 设计了粒子的飞行方法及$r$-邻域环状拓扑的粒子学习关系.为使粒子具有跳出局部极值的能力和减轻粒子快速趋同对全局寻优造成的不利影响, 分别设计了突变算子和散开算子.此外, 为了得到比较简洁的函数模型, 在粒子的评价函数中以罚函数的方式对编码的有效长度进行控制.仿真实验表明, 提出的算法可以获得拟合精度更高、简洁性更好的函数模型. 相似文献
17.
多目标优化非支配集的构造是多目标进化算法研究领域的一个重要步骤,旨在研究用多目标进化算法解决多目标优化问题的效率。对多目标优化问题进行了描述并且给出了求解算法的一般框架,结合研究现状讨论了目前该领域几种主要的基于Pareto非支配集的构造算法,以及它们的计算时间复杂度;总结并展望了该领域未来的发展趋势。 相似文献
18.
蒲骁旻 《计算机应用与软件》2013,(10)
在经典的非支配排序遗传算法中,基于聚集距离的种群维护策略并不能很好地保持解集的分布性。提出一种改进的基于聚集距离调整的分布性维护策略,根据邻近个体的聚集距离大小关系,保留分布较好的个体。与经典算法NSGA-Ⅱ,PESA-Ⅱ和小生境方法进行比较,实验结果表明,提出的分布性维护策略能较大程度提高分布性,并保持较好的收敛性。 相似文献
19.
This paper presents a novel method for computing the multi-objective problem in the case of a metric state space using the Manhattan distance. The problem is restricted to a class of ergodic controllable finite Markov chains. This optimization approach is developed for converging to an optimal solution that corresponds to a strong Pareto optimal point in the Pareto front. The method consists of a two-step iterated procedure: (a) the first step consists on an approximation to a strong Pareto optimal point and, (b) the second step is a refinement of the previous approximation. We formulate the problem adding the Tikhonov's regularization method to ensure the convergence of the cost-functions to a unique strong point into the Pareto front. We prove that there exists an optimal solution that is a strong Pareto optimal solution and it is the closest solution to the utopian point of the Pareto front. The proposed solution is validated theoretically and by a numerical example considering the vehicle routing planning problem. 相似文献
20.
在进化多目标优化研究领域,多目标优化是指对含有2个及以上目标的多目标问题的同时优化,其在近些年来受到越来越多的关注。随着MOEA/D的提出,基于聚合的多目标进化算法得到越来越多的研究,对MOEA/D算法的改进已有较多成果,但是很少有成果研究MOEA/D中权重的产生方法。提出一种使用多目标进化算法产生任意多个均匀分布的权重向量的方法,将其应用到MOEA/D,MSOPS和NSGA-III中,对这3个经典的基于聚合的多目标进化算法进行系统的比较研究。通过该类算法在DTLZ测试集、多目标旅行商问题MOTSP上的优化结果来分别研究该类算法在连续性问题、组合优化问题上的优化能力,以及使用矩形测试问题使得多目标进化算法的优化结果在决策空间可视化。实验结果表明,没有一个算法能适用于所有特性的问题。然而,MOEA/D采用不同聚合函数的两个算法MOEA/D_Tchebycheff和MOEA/D_PBI在多数情况下的性能比MSOPS和NSGA-III更好。 相似文献