首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
为了有效求解多目标优化问题,找到分布宽广、均匀的Pareto解集,提出了一个基于空间网格划分的进化算法。将目标空间网格化,利用网格的位置,删除大量被支配个体。在杂交算子中利用了单个目标最优的个体信息,以增加非劣解的宽广性。利用一种新设计的基于最大距离排序的方法删除非劣解集中多余个体。数值实验表明提出的算法是可行有效的。  相似文献   

2.
目前,多目标进化算法在众多领域具有极高的应用价值,是优化领域的研究热点之一.分析已有多目标进化算法在保持种群多样性方面的不足并提出一种基于解空间划分的自适应多目标进化算法(space division basedadaptive multiobjective evolutionary algorithm,简称SDA-MOEA)来解决多目标优化问题.该方法首先将多目标优化问题的解空间划分为大量子空间,在算法进化过程中,每个子空间都保留一个非支配解集,以保证种群的多样性.另外,该方法根据每个子空间推进种群前进的距离,自适应地为每个子空间分配进化机会,以提高种群的进化速度.最后,利用3组共14个多目标优化问题检验SDA-MOEA的性能,并将SDA-MOEA与其他5个已有多目标进化算法进行对比分析.实验结果表明:在10个问题上,算法SDA-MOEA显著优于其他对比算法.  相似文献   

3.
针对约束多目标优化算法存在难以有效地兼顾收敛性和多样性的问题,提出一种基于协同进化的约束多目标优化算法.第一阶段,通过基于稳态演化的可行解搜索方式得到一个具有一定数量可行解的种群;第二阶段,将这个种群拆分为两个子种群,并通过双子种群协同进化的方式实现对收敛性和多样性的兼顾;最后采用标准约束多目标优化问题CF1~CF7、...  相似文献   

4.
基于进化算法的多目标优化方法   总被引:10,自引:0,他引:10  
进化算法在解决多目标优化问题中有其特有的优势.首先对多目标优化问题进行了描述;然后结合研究现状讨论了目前几种主要的基于进化算法的多目标优化方法,以及它们的优缺点;最后给出了多目标进化优化算法的一些应用,以及进化多目标优化算法的未来发展方向.  相似文献   

5.
目前,大多数多目标进化算法采用为单目标优化所设计的重组算子.通过证明或实验分析了几个典型的单目标优化重组算子并不适合某些多目标优化问题.提出了基于分解技术和混合高斯模型的多目标优化算法(multiobjective evolutionary algorithm based on decomposition and mixture Gaussian models,简称MOEA/D-MG).该算法首先采用一个改进的混合高斯模型对群体建模并采样产生新个体,然后利用一个贪婪策略来更新群体.针对具有复杂Pareto前沿的多目标优化问题的测试结果表明,对给定的大多数测试题,该算法具有良好的效果.  相似文献   

6.
基于遗传算法求解多目标优化问题Pareto前沿   总被引:7,自引:0,他引:7  
该文给出了传统的求解多目标优化方法存在的问题,引入了当前研究多目标优化的新方法———基于遗传算法求解问题的pareto解,讨论了该方法要解决的关键问题———多样性保持及解决策略,并给出了一个求解pareto解集的新算法,算法简单、高效、鲁棒性强。最后给出了实验结果。  相似文献   

7.
田红军  汪镭  吴启迪 《控制与决策》2017,32(10):1729-1738
为了提高多目标优化算法的求解性能,提出一种启发式的基于种群的全局搜索与局部搜索相结合的多目标进化算法混合框架.该框架采用模块化、系统化的设计思想,不同模块可以采用不同策略构成不同的算法.采用经典的改进非支配排序遗传算法(NSGA-II)和基于分解的多目标进化算法(MOEA/D)作为进化算法的模块算法来验证所提混合框架的有效性.数值实验表明,所提混合框架具有良好性能,可以兼顾算法求解的多样性和收敛性,有效提升现有多目标进化算法的求解性能.  相似文献   

8.
齐雁楠  王红 《计算机工程》2005,31(Z1):20-22
针对航空公司人员排班问题,提出了一种基于空间划分的进化算法。根据种群个体的分布,结合空间划分思想,对进化算法的编码方式和进化算子进行了改进,并以清洁工排班为例,验证了算法的可行性和优越性,对实际应用提供了良好的参考。  相似文献   

9.
贺群  程格  安军辉  戴光明  彭雷 《计算机科学》2012,39(103):489-492
为了克服部分多目标进化算法中容易出现退化与早熟,造成收敛速度过慢的不足,结合精英保留策略、基于近部规则的环境选择以及免疫克隆算法中的比例克隆等思想,提出一种基于Pareto的多目标克隆进化算法NPCA(Non-dominated Pareto Clonal Algorithm)。通过部分多目标优化测试函数ZDT和DTLZ对算法进行了性能测试,验证了该算法能获得分布更加均匀的Parcto前沿,解的收敛性明显优于典型的多目标进化算法。  相似文献   

10.
一种基于决策图贝叶斯网络的强度Pareto进化算法   总被引:3,自引:0,他引:3  
提出了一种基于决策图贝叶斯网络的强度Pareto进化算法,该算法把贝叶斯概率模型结合到多目标进化算法中,通过构造和学习网络来替代传统进化算法中的交叉重组和变异等遗传操作,避免对大量参数的人工设置和重要构造块的破坏.求解多目标背包问题的仿真结果表明,所提算法可以快速收敛到较好的Pareto前沿,有很强的鲁棒性.  相似文献   

11.
多目标进化算法研究进展   总被引:19,自引:0,他引:19  
郑向伟  刘弘 《计算机科学》2007,34(7):187-192
进化算法具有本质上并行、不需要求导或其他辅助知识、一次运行产生多个解和简单易于实现等优点,被视为求解多目标优化问题的有效方法,目前已经形成了各种不同的多目标进化算法(MOEA)。本文首先回顾了多目标进化算法的研究起源,给出了多目标优化问题的数学描述;其次,详细分析了第一代多目标进化算法,其主要特征是简单易于实现,包括NSGA、NPGA、MOGA等,并指出这一代算法研究的成绩与不足;然后,对第二代多目标进化算法作了全面分析,指出其特征是强调效率,以精英保留策略为实现机制,且对SPEA、PAES、NSGAⅡ、NPGA2、PESA、Micro-GA等方法进行分析比较,还对这一代的研究作了总结;最后,对多目标进化算法的研究趋势作了展望和预测。  相似文献   

12.
拥挤度距离是一种用于度量解集多样性的指标. 然而, 在许多情况下, 该指标无法有效区分多样性较优个体. 其原因为拥挤度距离主要利用每个位置的局部信息. 为解决该问题, 基于整个种群全局位置信息, 本文设计了基于平均距离聚类的多样性度量指标, 并进一步提出了基于平均距离聚类的NSGA-Ⅱ. 该算法利用平均距离将种群划分为若干个大致均匀分布的小种群, 然后分别在各小种群内执行选择、交叉和变异等操作. 实验结果表明, 本文所提算法可以有效地保持种群多样性.  相似文献   

13.
王丽英  段孟柳 《自动化学报》2020,46(11):2439-2447
面向机载LiDAR数据的道路提取算法的常用数据结构存在局限:2D格网及TIN表达多次回波数据时存在的信息损失会影响提取结果的完整性且提取结果为2D形式;点云的空间结构及拓扑信息难以利用,由此导致算法设计的困难.为此,提出了一种基于灰度体元模型的3D道路提取算法.算法首先将LiDAR数据规则化为灰度体元模型(灰度为体元内...  相似文献   

14.
    
Competence set is widely used to plan the optimal expansion process of skills, abilities or strategies. However, the conventional method is concerned only with one criterion rather than multi-criteria problems. In addition, the crisp value cannot reflect the ambiguity and the uncertainty in practice. In this paper, we propose the fuzzy criteria competence set analysis. In order to obtain Pareto solutions, multi-objective evolutionary algorithm (MOEA) is employed here. A numerical example with two fuzzy criteria is also used to illustrate the proposed method.  相似文献   

15.
陈国玉  李军华  黎明  陈昊 《自动化学报》2021,47(11):2675-2690
在高维多目标优化中, 不同的优化问题存在不同形状的Pareto前沿(PF), 而研究表明大多数多目标进化算法(Multi-objective evolutionary algorithms, MOEAs) 在处理不同的优化问题时普适性较差. 为了解决这个问题, 本文提出了一个基于R2指标和参考向量的高维多目标进化算法(An R2 indicator and reference vector based many-objective optimization evolutionary algorithm, R2-RVEA). R2-RVEA基于Pareto支配选取非支配解来指导种群进化, 仅当非支配解的数量超过种群规模时, 算法进一步采用种群分解策略和R2指标选择策略进行多样性管理. 通过大量的实验证明, 本文提出的算法在处理不同形状的PF时具有良好的性能.  相似文献   

16.
马炫  李星  唐荣俊  刘庆 《自动化学报》2020,46(8):1714-1726
符号回归以构建一个能拟合给定数据集的函数模型为目的, 是对基本函数、运算符、变量等进行组合优化的过程.本文提出了一种求解符号回归问题的粒子群优化算法.算法以语法树对函数模型进行表达, 采用基因表达式将语法树编码为一个粒子, 设计了粒子的飞行方法及$r$-邻域环状拓扑的粒子学习关系.为使粒子具有跳出局部极值的能力和减轻粒子快速趋同对全局寻优造成的不利影响, 分别设计了突变算子和散开算子.此外, 为了得到比较简洁的函数模型, 在粒子的评价函数中以罚函数的方式对编码的有效长度进行控制.仿真实验表明, 提出的算法可以获得拟合精度更高、简洁性更好的函数模型.  相似文献   

17.
多目标优化非支配集的构造是多目标进化算法研究领域的一个重要步骤,旨在研究用多目标进化算法解决多目标优化问题的效率。对多目标优化问题进行了描述并且给出了求解算法的一般框架,结合研究现状讨论了目前该领域几种主要的基于Pareto非支配集的构造算法,以及它们的计算时间复杂度;总结并展望了该领域未来的发展趋势。  相似文献   

18.
在经典的非支配排序遗传算法中,基于聚集距离的种群维护策略并不能很好地保持解集的分布性。提出一种改进的基于聚集距离调整的分布性维护策略,根据邻近个体的聚集距离大小关系,保留分布较好的个体。与经典算法NSGA-Ⅱ,PESA-Ⅱ和小生境方法进行比较,实验结果表明,提出的分布性维护策略能较大程度提高分布性,并保持较好的收敛性。  相似文献   

19.
    
This paper presents a novel method for computing the multi-objective problem in the case of a metric state space using the Manhattan distance. The problem is restricted to a class of ergodic controllable finite Markov chains. This optimization approach is developed for converging to an optimal solution that corresponds to a strong Pareto optimal point in the Pareto front. The method consists of a two-step iterated procedure: (a) the first step consists on an approximation to a strong Pareto optimal point and, (b) the second step is a refinement of the previous approximation. We formulate the problem adding the Tikhonov's regularization method to ensure the convergence of the cost-functions to a unique strong point into the Pareto front. We prove that there exists an optimal solution that is a strong Pareto optimal solution and it is the closest solution to the utopian point of the Pareto front. The proposed solution is validated theoretically and by a numerical example considering the vehicle routing planning problem.  相似文献   

20.
马庆 《计算机科学》2016,43(Z11):117-122, 160
在进化多目标优化研究领域,多目标优化是指对含有2个及以上目标的多目标问题的同时优化,其在近些年来受到越来越多的关注。随着MOEA/D的提出,基于聚合的多目标进化算法得到越来越多的研究,对MOEA/D算法的改进已有较多成果,但是很少有成果研究MOEA/D中权重的产生方法。提出一种使用多目标进化算法产生任意多个均匀分布的权重向量的方法,将其应用到MOEA/D,MSOPS和NSGA-III中,对这3个经典的基于聚合的多目标进化算法进行系统的比较研究。通过该类算法在DTLZ测试集、多目标旅行商问题MOTSP上的优化结果来分别研究该类算法在连续性问题、组合优化问题上的优化能力,以及使用矩形测试问题使得多目标进化算法的优化结果在决策空间可视化。实验结果表明,没有一个算法能适用于所有特性的问题。然而,MOEA/D采用不同聚合函数的两个算法MOEA/D_Tchebycheff和MOEA/D_PBI在多数情况下的性能比MSOPS和NSGA-III更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号