首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
序列模式的挖掘是近年来的研究热点之一,目前很多研究都集中在闭合频繁项集与闭合序列模式的挖掘,较少涉及更加复杂、有重要应用价值的组合序列模式.针对任意长度和任意组合次数的频繁组合序列模式,提出了一种挖掘全部闭合的组合序列的算法CloCSP.为克服指数量级的候选序列进行闭合检验的困难,提出了既能生成频繁组合序列,又能有效剪枝,并同时完成闭合检验的混合扩展策略,该策略无需维护候选集.实验表明,CloCSP算法能够有效挖掘出隐藏在序列数据中,尤其是稠密数据集内的闭合组合序列模式,有助于揭示更加复杂的序列模式.  相似文献   

2.
Data mining has become increasingly important in the Internet era. The problem of mining inter-sequence pattern is a sub-task in data mining with several algorithms in the recent years. However, these algorithms only focus on the transitional problem of mining frequent inter-sequence patterns and most frequent inter-sequence patterns are either redundant or insignificant. As such, it can confuse end users during decision-making and can require too much system resources. This led to the problem of mining inter-sequence patterns with item constraints, which addressed the problem when end-users only concerned the patterns contained a number of specific items. In this paper, we propose two novel algorithms for it. First is the ISP-IC (Inter-Sequence Pattern with Item Constraint mining) algorithm based on a theorem that quickly determines whether an inter-sequence pattern satisfies the constraints. Then, we propose a way to improve the strategy of ISP-IC, which is then applied to the \(i\)ISP-IC algorithm to enhance the performance of the process. Finally, pi ISP-IC, a parallel version of \(i\)ISP-IC, will be presented. Experimental results show that pi ISP-IC algorithm outperforms the post-processing of the-state-of-the-art method for mining inter-sequence patterns (EISP-Miner), ISP-IC, and \(i\)ISP-IC algorithms in most of the cases.  相似文献   

3.
《Knowledge》2007,20(1):86-97
Frequent pattern mining is one of main concerns in data mining tasks. In frequent pattern mining, closed frequent pattern mining and weighted frequent pattern mining are two main approaches to reduce the search space. Although many related studies have been suggested, no mining algorithm considers both paradigms. Even if closed frequent pattern mining represents exactly the same knowledge and weighted frequent pattern mining provides a way to discover more important patterns, the incorporation of closed frequent pattern mining and weight frequent pattern mining may loss information. Based on our analysis of joining orders, we propose closed weighted frequent pattern mining, and present how to discover succinct but lossless closed frequent pattern with weight constraints. To our knowledge, ours is the first work specifically to consider both constraints. An extensive performance study shows that our algorithm outperforms previous algorithms. In addition, it is efficient and scalable.  相似文献   

4.
; 对于不确定数据的频繁序列模式挖掘,会导致可能频繁模式数量的指数级出现,其中有些无用的挖掘结果,引起频繁序列的冗余。针对上述不足, 提出了可能频繁闭序列模式(pfcsp)的定义, 以及一种基于不确定数据的可能频繁闭序列挖掘算法U-FCSM。此算法中,基于一种元组不确定数据模型,计算序列的可能频繁性,应用BIDE算法的闭序列思想判断可能频繁序列是否是可能频繁闭序列模式。为了减少搜索空间与避免冗余的计算,应用了几个剪枝与边界技术。U-FCSM算法的有效性与效率通过大量的实验得以表明。  相似文献   

5.
Previous research works have presented convincing arguments that a frequent pattern mining algorithm should not mine all frequent but only the closed ones because the latter leads to not only more compact yet complete result set but also better efficiency. Upon discovery of frequent closed XML query patterns, indexing and caching can be effectively adopted for query performance enhancement. Most of the previous algorithms for finding frequent patterns basically introduced a straightforward generate-and-test strategy. In this paper, we present SOLARIA*, an efficient algorithm for mining frequent closed XML query patterns without candidate maintenance and costly tree-containment checking. Efficient algorithm of sequence mining is involved in discovering frequent tree-structured patterns, which aims at replacing expensive containment testing with cheap parent-child checking in sequences. SOLARIA* deeply prunes unrelated search space for frequent pattern enumeration by parent-child relationship constraint. By a thorough experimental study on various real-life data, we demonstrate the efficiency and scalability of SOLARIA* over the previous known alternative. SOLARIA* is also linearly scalable in terms of XML queries' size.  相似文献   

6.
Mining sequential patterns by pattern-growth: the PrefixSpan approach   总被引:12,自引:0,他引:12  
Sequential pattern mining is an important data mining problem with broad applications. However, it is also a difficult problem since the mining may have to generate or examine a combinatorially explosive number of intermediate subsequences. Most of the previously developed sequential pattern mining methods, such as GSP, explore a candidate generation-and-test approach [R. Agrawal et al. (1994)] to reduce the number of candidates to be examined. However, this approach may not be efficient in mining large sequence databases having numerous patterns and/or long patterns. In this paper, we propose a projection-based, sequential pattern-growth approach for efficient mining of sequential patterns. In this approach, a sequence database is recursively projected into a set of smaller projected databases, and sequential patterns are grown in each projected database by exploring only locally frequent fragments. Based on an initial study of the pattern growth-based sequential pattern mining, FreeSpan [J. Han et al. (2000)], we propose a more efficient method, called PSP, which offers ordered growth and reduced projected databases. To further improve the performance, a pseudoprojection technique is developed in PrefixSpan. A comprehensive performance study shows that PrefixSpan, in most cases, outperforms the a priori-based algorithm GSP, FreeSpan, and SPADE [M. Zaki, (2001)] (a sequential pattern mining algorithm that adopts vertical data format), and PrefixSpan integrated with pseudoprojection is the fastest among all the tested algorithms. Furthermore, this mining methodology can be extended to mining sequential patterns with user-specified constraints. The high promise of the pattern-growth approach may lead to its further extension toward efficient mining of other kinds of frequent patterns, such as frequent substructures.  相似文献   

7.
刘佳新 《计算机工程》2012,38(12):39-41
现有的增量式挖掘算法在支持度发生变化时,需要对序列数据库进行重复挖掘,为减少由此产生的时空消耗,提出一种高效的增量式序列模式挖掘算法。算法采用频繁序列树作为序列存储结构,当序列数据库和最小支持度发生变化时,通过执行更新操作,实现频繁序列树的更新,利用深度优先遍历频繁序列树找到序列数据库中所有的序列模式。实验结果表明,与IncSpan算法和PrefixSpan算法相比,该算法的挖掘效率较高。  相似文献   

8.
Previous studies have presented convincing arguments that a frequent pattern mining algorithm should not mine all frequent patterns but only the closed ones because the latter leads to not only a more compact yet complete result set but also better efficiency. However, most of the previously developed closed pattern mining algorithms work under the candidate maintenance-and- test paradigm, which is inherently costly in both runtime and space usage when the support threshold is low or the patterns become long. In this paper, we present BIDE, an efficient algorithm for mining frequent closed sequences without candidate maintenance. It adopts a novel sequence closure checking scheme called Bl-Directional Extension and prunes the search space more deeply compared to the previous algorithms by using the BackScan pruning method. A thorough performance study with both sparse and dense, real, and synthetic data sets has demonstrated that BIDE significantly outperforms the previous algorithm: It consumes an order(s) of magnitude less memory and can be more than an order of magnitude faster. It is also linearly scalable in terms of database size.  相似文献   

9.
Sequential pattern mining has been studied extensively in the data mining community. Most previous studies require the specification of a min_support threshold for mining a complete set of sequential patterns satisfying the threshold. However, in practice, it is difficult for users to provide an appropriate min_support threshold. To overcome this difficulty, we propose an alternative mining task: mining top-k frequent closed sequential patterns of length no less than min_, where k is the desired number of closed sequential patterns to be mined and min_ is the minimal length of each pattern. We mine the set of closed patterns because it is a compact representation of the complete set of frequent patterns. An efficient algorithm, called TSP, is developed for mining such patterns without min_support. Starting at (absolute) min_support=1, the algorithm makes use of the length constraint and the properties of top-k closed sequential patterns to perform dynamic support raising and projected database pruning. Our extensive performance study shows that TSP has high performance. In most cases, it outperforms the efficient closed sequential pattern-mining algorithm, CloSpan, even when the latter is running with the best tuned min_support threshold. Thus, we conclude that, for sequential pattern mining, mining top-k frequent closed sequential patterns without min_support is more preferable than the traditional min_support-based mining.  相似文献   

10.
序列模式在基因分析、金融预测等方面有着重要的应用,是数据挖掘的一个主要分支,鉴于数据流应用的日益增多。本文在研究传统序列模式挖掘算法的基础上,提出了一种基于可扩展滑动窗口和贝叶斯概率过滤的面向数据流的序列模式挖掘算法(BMSP—DS算法),目的是简化序列模式发现的中间结果,提高挖掘效率.以便在小的存储空间和低的运算时间内快速发现流数据的频繁序列模式,同时算法也减少了因主观支持度取值不当对模式发现造成的负面影响,实验结果表明,该算法是可行、较优的.  相似文献   

11.
In this paper, we proposed an efficient algorithm, called PCP-Miner (Pointset Closed Pattern Miner), for mining frequent closed patterns from a pointset database, where a pointset contains a set of points. Our proposed algorithm consists of two phases. First, we find all frequent patterns of length two in the database. Second, for each pattern found in the first phase, we recursively generate frequent closed patterns by a frequent pattern tree in a depth-first search manner. Since the PCP-Miner does not generate unnecessary candidates, it is more efficient and scalable than the modified Apriori, SASMiner and MaxGeo. The experimental results show that the PCP-Miner algorithm outperforms the comparing algorithms by more than one order of magnitude.  相似文献   

12.
挖掘闭合模式的高性能算法   总被引:16,自引:1,他引:16  
频繁闭合模式集惟一确定频繁模式完全集并且尺寸小得多,然而挖掘频繁闭合模式仍然是时间与存储开销很大的任务.提出一种高性能算法来解决这一难题.采用复合型频繁模式树来组织频繁模式集,存储开销较小.通过集成深度与宽度优先策略,伺机选择基于数组或基于树的模式支持子集表示形式,启发式运用非过滤虚拟投影或过滤型投影,实现复合型频繁模式树的快速生成.局部和全局剪裁方法有效地缩小了搜索空间.通过树生成与剪裁代价的平衡实现时间效率与可伸缩性最大化.实验表明,该算法时间效率比其他算法高5倍到3个数量级,空间可伸缩性最佳.它可以进一步应用到无冗余关联规则发现、序列分析等许多数据挖掘问题.  相似文献   

13.
孙蕾  朱玉全 《计算机工程》2006,32(11):95-96,99
如何确定候选频繁序列模式以及如何计算它们的支持数是序列模式挖掘中的两个关键问题。该文提出了一种基于二进制形式的候选频繁序列模式生成和相应的支持数计算方法,该方法只需对挖掘对象进行一些“或”、“与”、“异或”等逻辑运算操作,显著降低了算法的实现难度,将该方法与频繁序列模式挖掘及更新算法相结合,可以进一步提高算法的执行效率。  相似文献   

14.
In this paper, we propose an efficient algorithm, called CMP-Miner, to mine closed patterns in a time-series database where each record in the database, also called a transaction, contains multiple time-series sequences. Our proposed algorithm consists of three phases. First, we transform each time-series sequence in a transaction into a symbolic sequence. Second, we scan the transformed database to find frequent patterns of length one. Third, for each frequent pattern found in the second phase, we recursively enumerate frequent patterns by a frequent pattern tree in a depth-first search manner. During the process of enumeration, we apply several efficient pruning strategies to remove frequent but non-closed patterns. Thus, the CMP-Miner algorithm can efficiently mine the closed patterns from a time-series database. The experimental results show that our proposed algorithm outperforms the modified Apriori and BIDE algorithms.  相似文献   

15.
直接对生物序列进行频繁模式挖掘会产生很多冗余模式,闭合模式更能表达出序列的功能和结构。根据生物序列的特点,提出了基于相邻闭合频繁模式段的模式挖掘算法-JCPS。首先产生闭合相邻频繁模式段,然后对这些闭合频繁模式段进行组合,同时进行闭合检测,产生新的闭合频繁模式。通过对真实的蛋白质序列家族库的处理,证明该算法能有效处理生物序列数据。  相似文献   

16.
多维概念格与多维序列模式的增量挖掘   总被引:1,自引:0,他引:1  
多维序列模式挖掘旨在将一个或多个背景维度信息中发现的关联模式与有序事务序列中发现的序列模式有机结合,从而为用户提供信息内容更加丰富、更具有直接应用价值的多维序列模式.目前虽有一些挖掘多维序列模式的工作,但其关联模式与序列模式的发现过程是基于不同的数据结构分开进行的.提出一种新的概念格结构——多维概念格,它是对概念格的延伸与泛化,其内涵更加丰富,不仅具有多个有序的任务内涵,而且具有多个无序的背景内涵.设计实现了基于该结构的增量式多维序列模式挖掘算法,该算法使用统一的数据模型实现关联模式与序列模式的高效同步挖掘.在合成数据集上的实验结果验证了算法的有效性.同时,算法在实际的银行数据集上的应用效果也说明了算法的实用性.  相似文献   

17.
频繁闭项目集挖掘是数据挖掘研究中的一个重要研究课题.目前已有的频繁闭项目集挖掘算法主要针对单机环境,有关分布式环境下的全局频繁闭项目集挖掘算法的研究尚不多见.为此,本文提出了一种快速挖掘全局频繁闭项目集算法,并对其更新问题进行了研究;提出了一种相应的频繁闭项目集增量式更新算法,该算法将充分利用先前的挖掘结果来节省发现新的全局频繁闭项目集的时间开销.实验结果表明算法是有效的.  相似文献   

18.
基于经典的BIDE算法,提出一种多核并行闭合序列模式挖掘算法——MT_BIDE。该算法在频繁序列扩展判断前进行剪枝,在扩展过程中动态调整频繁序列及其伪投影数据集,平衡不同线程间挖掘闭合序列模式的计算量差异。实验结果表明,该算法具有较高的运行效率和加速比。  相似文献   

19.
Scalability is a primary issue in existing sequential pattern mining algorithms for dealing with a large amount of data. Previous work, namely sequential pattern mining on the cloud (SPAMC), has already addressed the scalability problem. It supports the MapReduce cloud computing architecture for mining frequent sequential patterns on large datasets. However, this existing algorithm does not address the iterative mining problem, which is the problem that reloading data incur additional costs. Furthermore, it did not study the load balancing problem. To remedy these problems, we devised a powerful sequential pattern mining algorithm, the sequential pattern mining in the cloud-uniform distributed lexical sequence tree algorithm (SPAMC-UDLT), exploiting MapReduce and streaming processes. SPAMC-UDLT dramatically improves overall performance without launching multiple MapReduce rounds and provides perfect load balancing across machines in the cloud. The results show that SPAMC-UDLT can significantly reduce execution time, achieves extremely high scalability, and provides much better load balancing than existing algorithms in the cloud.  相似文献   

20.
在数据挖掘研究中,频繁闭项目集挖掘成为重要的研究方向.目前已有的频繁闭项目集挖掘算法主要针对单机环境,有关分布式环境下的全局频繁闭项目集挖掘算法的研究尚不多见.针对无共享体系结构数据水平分布的情况,提出了一种分布式快速挖掘全局频繁闭项目集增量式更新算法,算法通过对各节点候选频繁项目集进行预处理,有效地降低网络通信量,提高全局频繁闭项目集挖掘算法的效率,该算法充分利用前次挖掘结果来发现新的全局频繁闭项目集,具有较高的效率.理论分析和实验结果表明算法是有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号