首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We conducted a preliminary investigation of the response of ERS C-band SAR backscatter to variations in soil moisture and surface inundation in wetlands of interior Alaska. Data were collected from 5 wetlands over a three-week period in 2007. Results showed a positive correlation between backscatter and soil moisture in sites dominated by herbaceous vegetation cover (r = 0.74, p < 0.04). ERS SAR backscatter was negatively correlated to water depth in all open (non-forested) wetlands when water table levels were more than 6 cm above the wetland surface (r = − 0.82, p < 0.001). There was no relationship between backscatter and soil moisture in the forested (black spruce-dominated) wetland site. Our preliminary results show that ERS SAR data can be used to monitor variations in hydrologic conditions in high northern latitude wetlands (including peatlands), particularly sites with sparse tree cover.  相似文献   

2.
Hydrology is the single most important abiotic factor in the formation and functioning of a wetland. Many limitations still exist to accurately characterizing wetland hydrology over large spatial extents, especially in forested wetlands. Imaging radar has emerged as a viable tool for wetland flood mapping, although the limitations of radar data remain uncertain. The influence of incidence angle on the ability to detect flooding in different forest types was examined using C-HH Radarsat-1 data (23.5°, 27.5°, 33.5°, 39.0°, 43.5°, and 47.0°) during the leaf-off and leaf-on seasons. The ability to detect flooding under leaf-on conditions varied much more according to incidence angle while forest type (open canopy tupelo-cypress, tupelo-cypress, and bottomland hardwood) had a greater effect during the leaf-off season. When all forest types were considered together, backscatter generally decreased with increasing incidence angle under all conditions (2.45 dB between 23.5° and 47.0° flooded, leaf-off; 2.28 dB between 23.5° and 47.0° not flooded, leaf-off; 0.62 between 23.5° and 43.5° flooded, leaf-on; 1.73 dB between 23.5° and 43.5° not flooded, leaf-on; slope was not constant between incidence angles), but the distinction between flooded and non-flooded areas did not decline sharply with incidence angle. Differentiation of flooded and non-flooded forests was similar during the leaf-off and leaf-on seasons. The ability to detect inundation under forest canopies was less than expected at smaller incidence angles and greater than expected at larger incidence angles, based on the results of previous studies. Use of a wider range of incidence angles during the entire year increases the temporal resolution of imagery which may, in turn, enhance mapping of inundation beneath forest canopies.  相似文献   

3.
Recent studies [Bourgeau-Chavez, L.L., Kasischke, E.S., Riordan, K., Brunzell, S.M., Nolan, M., Hyer, E.J., Slawski, J.J., Medvecz, M., Walters, T., and Ames, S. (in press). Remote monitoring of spatial and temporal surface soil moisture in fire disturbed boreal forest ecosystems with ERS SAR imagery. Int. J. Rem. Sens.] demonstrated that ERS SAR imagery can be used to estimate surface soil moisture in recently burned black spruce forests in interior Alaska. We used this relationship to analyze the intra- and inter-annual variations surface soil moisture in two burned black spruce forests in Alaska. The results of this study showed distinct seasonal and longer-term trends in soil moisture in the two sites, with the site that burned in 1994 having higher soil moisture than the site that burned in 1999. The differences in soil moisture between the sites were related to landscape-scale variations in soil drainage and seasonal permafrost thawing. Finally, we found that the 1999 site had dramatically lower levels of tree recruitment (both aspen and black spruce) than the 1994 site as a result of the lower soil moisture levels. These results show that the ERS SAR and similar systems can be used to monitor a site characteristic that is important to understanding changes in the ecosystem community structure that result from variations in climate and the fire regime in the boreal region.  相似文献   

4.
Studies of ERS-1 synthetic aperture radar (SAR) imagery have shown that fire scars in Alaskan forests are significantly brighter (3–6 dB) than surrounding unburned forest. The signature varies seasonally and changes as vegetation re-establishes on the site over longer time periods (>5years). Additionally, it is known that soil water content typically increases following forest fires due to changes in evapotranspiration rates and melting of the permafrost.

The objective of this study was to understand the relation between soil water content and the ERS-1 SAR signature at fire-disturbed sites. To accomplish this objective, we compared soil water in six burned black spruce (Picea mariana (Mill.) B.S.P.) forest sites in interior Alaska to ERS-1 SAR backscalter measurements. The six sites are of various age since burn. Soil water was periodically measured at each site during the summer of 1992 and at one site in 1993 and 1994 when the ERS-1 imaging radar was scheduled to pass overhead. Results indicate that a positive linear relation exists between soil water content and the SAR backscatter coefficient in young burns ( < ~4years). Older burns do not show this relation, a result of vegetation establishment following the burn. This interaction between soil moisture condition and ERS-1 SAR backscatter shows great potential for measuring soil water content and monitoring seasonal variations in soil water content in black spruce sites recently disturbed by wildfire.  相似文献   

5.
A study was carried out to investigate the utility of L-band SAR data for estimating aboveground biomass in sites with low levels of vegetation regrowth. Data to estimate biomass were collected from 59 sites located in fire-disturbed black spruce forests in interior Alaska. PALSAR L-band data (HH and HV polarizations) collected on two dates in the summer/fall of 2007 and one date in the summer of 2009 were used. Significant linear correlations were found between the log of aboveground biomass (range of 0.02 to 22.2 t ha-1) and σ° (L-HH) and σ° (L-HV) for the data collected on each of the three dates, with the highest correlation found using the L-HV data collected when soil moisture was highest. Soil moisture, however, did change the correlations between L-band σ° and aboveground biomass, and the analyses suggest that the influence of soil moisture is biomass dependent. The results indicate that to use L-band SAR data for mapping aboveground biomass and monitoring forest regrowth will require development of approaches to account for the influence that variations in soil moisture have on L-band microwave backscatter, which can be particularly strong when low levels of aboveground biomass occur.  相似文献   

6.

This study is an extension of earlier research which demonstrated the utility of ERS SAR data for detection and monitoring of fire-disturbed boreal forests of Alaska. Fire scars were mappable in Alaska due to the ecological changes that occur post-burn including increased soil moisture. High soil moisture caused a characteristic enhanced backscatter signal to be received by the ERS sensor from burned forests. Since regional ecological differences in the global boreal biome may have an effect on post-fire ecosystem changes, it may also affect how fire scars appear in C-band SAR imagery. In the current study we evaluate the use of C-band SAR data to detect, map and monitor boreal fire scars globally. Study sites include four regions of Canada and an area in central Russia. Fire boundaries were mapped from SAR data without a priori knowledge of fire scar locations. SAR-derived maps were validated with fire service records and field checks. Based on results from test areas in Northwest Territories, Ontario, southeastern Quebec, and central Russia, C-band SAR data have high potential for use in detecting and mapping fire scars globally.  相似文献   

7.
Multi-temporal C-band SAR data (C-HH and C-VV), collected by ERS-2 and ENVISAT satellite systems, are compared with field observations of hydrology (i.e., inundation and soil moisture) and National Wetland Inventory maps (U.S. Fish and Wildlife Service) of a large forested wetland complex adjacent to the Patuxent and Middle Patuxent Rivers, tributaries of the Chesapeake Bay. Multi-temporal C-band SAR data were shown to be capable of mapping forested wetlands and monitoring hydroperiod (i.e., temporal fluctuations in inundation and soil moisture) at the study site, and the discrimination of wetland from upland was improved with 10 m digital elevation data. Principal component analysis was used to summarize the multi-temporal SAR data sets and to isolate the dominant temporal trend in inundation and soil moisture (i.e., relative hydroperiod). Significant positive, linear correlations were found between the first principal component and percent area flooded and soil moisture. The correlation (r2) between the first principal component (PC1) of multi-temporal C-HH SAR data and average soil moisture was 0.88 (p = < .0001) during the leaf-off season and 0.87 (p = < .0001) during the leaf-on season, while the correlation between PC1 and average percent area inundated was 0.82 (p = < .0001) and 0.47 (p = .0016) during the leaf-off and leaf-on seasons, respectively. When compared to field data, the SAR forested wetland maps identified areas that were flooded for 25% of the time with 63–96% agreement and areas flooded for 5% of the time with 44–89% agreement, depending on polarization and time of year. The results are encouraging and justify further studies to attempt to quantify the relative SAR-derived hydroperiod classes in terms of physical variables and also to test the application of SAR data to more diverse landscapes at a broader scale. The present evidence suggests that the SAR data will significantly improve routine wooded wetland mapping.  相似文献   

8.
Multitemporal ERS-1 and ERS-2 SAR data were acquired for northern Jordan between 1995 and 1997 to investigate changes in the backscatter coefficients of a range of typical desert land surfaces. The changes in backscatter found were ascribed to variations in surface soil moisture, and changes in surface roughness caused by a range of natural and anthropogenic factors. Data collected from monitored sites were input into the Integral Equation Model (IEM). The model outputs were strongly correlated with observed backscatter coefficients (r 2=0.84). The results show that the successful monitoring of soil moisture in these environments is strongly dependent on the surface roughness. On surfaces with RMS height 0.5 cm, the sensitivity of the backscatter coefficient to changes in surface microtopography did not allow accurate soil moisture estimation. Microtopographic change on rougher surfaces has less influence on the backscatter coefficient, and the probability of soil moisture estimation from SAR imagery is greater. These results indicate that knowledge of the surface conditions (both in terms of surface roughness and geomorphology) is essential for accurate soil moisture monitoring, whether in a research or operational context. The potential benefits of these findings are discussed in the context of the Jordan Badia Research and Development Project.  相似文献   

9.
Evaluation of an area severely affected by fires in 1998 using a multitemporal series of ERS-2 Synthetic Aperture Radar (SAR) images showed that fire induced changes of the vegetation cover strongly affected C-band radar backscatter. We investigated the changes in radar backscatter over a period of ten months in areas of interest that represented different land-cover types at a study site in East Kalimantan, Indonesia. The impact of fire was found to cause a strong decrease in backscatter (2-5 dB) for all land-cover classes while areas not affected by fire showed only slight variations in backscatter (maximum 0.5 dB). Ground and aerial evidence suggests that the marked decrease in backscatter can be attributed to the removal of the vegetation cover and subsequently higher contribution of backscatter from dry soil. After the onset of rain the radar backscatter increased to 5.5 dB in areas severely affected by fire while in unburned forests it returned to values similar to those before the drought. Burned scars could be identified visually in multitemporal principal component analysis-enhanced ERS SAR colour composites.  相似文献   

10.
The Louisiana coast is subjected to hurricane impacts including flooding of human settlements, river channels and coastal marshes, and salt water intrusion. Information on the extent of flooding is often required quickly for emergency relief, repairs of infrastructure, and production of flood risk maps. This study investigates the feasibility of using Radarsat‐1 SAR imagery to detect flooded areas in coastal Louisiana after Hurricane Lili, October 2002. Arithmetic differencing and multi‐temporal enhancement techniques were employed to detect flooding and to investigate relationships between backscatter and water level changes. Strong positive correlations (R 2 = 0.7–0.94) were observed between water level and SAR backscatter within marsh areas proximate to Atchafalaya Bay. Although variations in elevation and vegetation type did influence and complicate the radar signature at individual sites, multi‐date differences in backscatter largely reflected the patterns of flooding within large marsh areas. Preliminary analyses show that SAR imagery was not useful in mapping urban flooding in New Orleans after Hurricane Katrina's landfall on 29 August 2005.  相似文献   

11.
ABSTRACT

Although regional wetland mapping studies have mostly relied on optical sensors, synthetic aperture radar (SAR) sensors are being increasingly applied. The aim of this study is to analyse the ability of the Phased Array type L-band Synthetic Aperture Radar on board of the Advanced Land Observing Satellite (ALOS/PALSAR-1) data to identify, delineate and monitor wetlands, and to evaluate the importance of scene selection in a highly unpredictable wetland. Three SAR scene sets (Year A, Year B and Inter-annual) were built for this purpose, considering the intra-annual and inter-annual hydrologic variability and the phenologic variability of the studied coastal wetland. Seven land cover types were defined, including three permanently flooded wetland classes, three temporarily flooded wetland classes and one non-wetland class. An object-based unsupervised classification approach was applied on each multi-temporal set. The obtained clusters were characterized by a temporal signature and assigned to the seven land cover types using a decision tree with user-defined thresholds. The accuracy assessment of each product was performed using a set of 258 data sites, including field collected data and data retrieved from Landsat 8 Operational Land Imager (OLI) imagery acquired during the dates of the field campaign. The Year B set showed the best accuracy (83.4% overall, 75% Kappa coefficient (κ)) and the lowest omission and commission mean errors (16.6% and 16.1% respectively). The classes that were best differentiated are permanently flooded wetlands (PFW) and non-wetlands (NW) in all sets.  相似文献   

12.
The goal of this research was to decompose polarimetric Synthetic Aperture Radar (SAR) imagery of upland and flooded forests into three backscatter types: single reflection, double reflection, and cross-polarized backscatter. We used a decomposition method that exploits the covariance matrix of backscatter terms. First we applied this method to SAR imagery of dihedral and trihedral corner reflectors positioned on a smooth, dry lake bed, and verified that it accurately isolated the different backscatter types. We then applied the method to decompose multi-frequency Jet Propulsion Laboratory (JPL) airborne SAR (AIRSAR) backscatter from upland and flooded forests to explain scattering components in SAR imagery from forested surfaces. For upland ponderosa pine forest in California, as SAR wavelength increased from C-band to P-band, scattering with an odd number of reflections decreased and scattering with an even number of reflections increased. There was no obvious trend with wavelength for cross-polarized scattering. For a bald cypress-tupelo floodplain forest in Georgia, scattering with an odd number of reflections dominated at C-band. Scattering power with an even number of reflections from the flooded forest was strong at L-band and strongest at P-band. Cross-polarized scattering may not be a major component of total backscatter at all three wavelengths. Various forest structural classes and land cover types were readily distinguishable in the imagery derived by the decomposition method. More importantly, the decomposition method provided a means of unraveling complex interactions between radar signals and vegetated surfaces in terms of scattering mechanisms from targets. The decomposed scattering components were additions to the traditional HH and V V backscatter. One cautionary note: the method was not well suited to targets with low backscatter and a low signal-to-noise ratio.  相似文献   

13.
Data from 202 forest plots on the Roanoke River floodplain, North Carolina were used to assess the capabilities of multitemporal radar imagery for estimating biophysical characteristics of forested wetlands. The research was designed to determine the potential for using widely available data from the current set of satellite-borne synthetic aperture radar (SAR) sensors to study forests over broad geographic areas and complex environmental gradients. The SAR data set included 11 Radarsat scenes, 2 ERS-1 images, and 1 JERS-1 scene. Empirical analyses were stratified by flood status such that sites were compared only if they exhibited common flooding characteristics. In general, the results indicate that forest properties are more accurately estimated using data from flooded areas, probably because variations in surface conditions are minimized where there is a continuous surface of standing water. Estimations yielded root mean square errors (RMSEs) for validation data around 10 m2/ha for basal area (BA), and less than 3 m for canopy height. The r2 values generally exceeded .65 for BA, with the best predictions coming from sample sites for which both nonflooded and flooded SAR scenes were available. The addition of early spring normalized difference vegetation index (NDVI) values from Landsat Thematic Mapper (Landsat TM) improved model predictions for BA in forests where BA levels were <55 m2/ha. Further analyses indicated a very limited sensitivity of the individual SAR scenes to differences in forest composition, although soil properties in nonflooded areas exerted a weak but nevertheless important influence on backscatter.  相似文献   

14.
Radarsat-2 imagery from extreme dry versus wet conditions are compared in an effort to determine the value of using polarimetric synthetic aperture radar (SAR) data for improving estimation of fuel moisture in a chronosequence of Alaskan boreal black spruce ecosystems (recent burns, regenerating forests dominated by shrubs, open canopied forests, moderately dense forest cover). Results show strong distinction between wet and dry conditions for C-HH and C-LR polarized backscatter, and Freeman–Durden and van Zyl surface bounce decomposition parameters (35–65% change for all but the dense spruce site). These four SAR variables have high potential for evaluation of within site surface soil moisture, as well as for relative distinction between wet and dry conditions across sites for lower biomass and sparse canopy forested sites. However, for any given test site except the shrubby regrowth site, van Zyl volume, surface, and double bounce scattering all result in similar percentage increases from dry to wet soil condition. This indicates that for most of these test sites/cases moisture enhances the magnitude of the return for all scattering mechanisms evaluated. Thus, differences in scattering from the interaction of biomass, surface roughness, and moisture condition across sites remains an issue and backscatter due to surface roughness or biomass cannot be uniquely estimated. In contrast, the Cloude–Pottier C-band decomposition variables appear invariant to soil moisture, but may instead account for variations in ecosystem structure and biomass. Further investigation is needed, as results warrant future research focused on evaluation of multiple polarimetric parameters in algorithm development.  相似文献   

15.
The study presented here focuses on using a spaceborne imaging radar, ERS-1, for mapping and estimating areal extent of fires which occurred in the interior region of Alaska. Fire scars are typically 3 to 6 dB brighter than adjacent unburned forests in the ERS-1 imagery. The enhanced backscatter from burned areas was found to be a result of high soil moisture and exposed rough ground surfaces. Fire scars from 1979 to 1992 are viewed in seasonal ERS-1 synthetic aperture radar (SAR) data obtained from 1991 to 1994. Three circumstances which influence the detectability of fire scars in the ERS-1 imagery are identified and examined; seasonality of fire scar appearances, fires occurring in mountainous regions, and fires occurring in wetland areas. Area estimates of the burned regions in the ERS-1 imagery are calculated through the use of a Geographic Information System (GIS) database. The results of this analysis are compared to fire records maintained by the Alaska Fire Service (AFS) and to estimates obtained through a similar study using the Advanced Very High Resolution Radiometer (AVHRR) sensor.  相似文献   

16.
Soil moisture estimation in a semiarid rangeland using ERS-2 and TM imagery   总被引:2,自引:0,他引:2  
Soil moisture is important information in semiarid rangelands where vegetation growth is heavily dependent on the water availability. Although many studies have been conducted to estimate moisture in bare soil fields with Synthetic Aperture Radar (SAR) imagery, little success has been achieved in vegetated areas. The purpose of this study is to extract soil moisture in sparsely to moderately vegetated rangeland surfaces with ERS-2/TM synergy. We developed an approach to first reduce the surface roughness effect by using the temporal differential backscatter coefficient (Δσwet-dry0). Then an optical/microwave synergistic model was built to simulate the relationship among soil moisture, Normalized Difference Vegetation Index (NDVI) and Δσwet-dry0. With NDVI calculated from TM imagery in wet seasons and Δσwet-dry0 from ERS-2 imagery in wet and dry seasons, we derived the soil moisture maps over desert grass and shrub areas in wet seasons. The results showed that in the semiarid rangeland, radar backscatter was positively correlated to NDVI when soil was dry (mv<10%), and negatively correlated to NDVI when soil moisture was higher (mv>10%). The approach developed in this study is valid for sparse to moderate vegetated areas. When the vegetation density is higher (NDVI>0.45), the SAR backscatter is mainly from vegetation layer and therefore the soil moisture estimation is not possible in this study.  相似文献   

17.
以扎龙自然保护区湿地为例,结合ENVISat ASAR多极化(HH/HV)雷达影像与传统的光学影像Landsat TM (band1~5,7),分析雷达影像后向散射系数与Landsat TM影像不同波段反射率在淹水植被、非淹水植被、明水面和裸土不同地表覆被类型的差异。选择训练样本,采用分类回归树(Classification and Regression Tree,CART)模型,分别对两种影像进行分类,可视化表达湿地植被淹水范围空间分布情况。基于实测的植被冠层下淹水范围与非淹水范围样本点对两种数据源的分类结果进行精度验证。结果表明:HH/HV极化影像中,植被覆盖下水体的后向散射系数与其他地表覆被类型有明显区别,分类结果总精度为79.49%,Kappa系数为0.70,湿地植被淹水范围提取精度较高。而TM影像分类结果中,由于部分地区植被覆盖水体,淹水植被分类误差较高。将雷达影像引入沼泽湿地研究,提高了植被淹水范围提取效果,为有效分析湿地生态水文过程提供基础,对湿地水资源合理利用及生物多样性保护具有重要意义。  相似文献   

18.
Orbital synthetic aperture radar (SAR) C‐band data acquired by ERS‐1/2 in vv‐polarization and Radarsat in hh‐polarization during the period from 1996 to 1999 were used to evaluate their combined information potential for classification of land cover in the arid environment of Kuwait. Individual SAR scenes were orthorectified using a digital elevation model (DEM) of Kuwait, radiometrically adjusted for incidence angle effects, and mosaics were generated for the whole country. The data were coregistered as multichannel composites and integrated with geographical information system (GIS) layers of roads, hydrology, soils and vegetation. An adaptive spatial filter was used to increase the number of effective independent looks prior to generation of feature vectors based on SAR backscatter power values. A total of 13 classes of the joint ERS‐1/2 and Radarsat images were identified based on Bhattacharya distance and geospatial pattern. The C‐band radar backscatter observed by ERS and Radarsat was found to be related to vegetation cover, surface roughness, percentage of coarse material in the surface layer and moisture conditions. These factors are not independent, but are known to be correlated. The complexity of these dependencies made unambiguous classification of surface material difficult when using C‐band data alone. Nevertheless, class labels were assigned using a maximum likelihood supervised classification incorporating field measurements and ancillary data such as soil, and surface sediment maps. When used in a simple two‐class classification (e.g. low vs. high vegetation cover fraction, or smooth vs. rough soils), the overall accuracy of the combined ERS and Radarsat data was between 70 and 80%. The generated dataset is amenable to several label definitions based on the requirements of the intended use.  相似文献   

19.
Wetland extent was mapped for the central Amazon region, using mosaicked L-band synthetic aperture radar (SAR) imagery acquired by the Japanese Earth Resources Satellite-1. For the wetland portion of the 18×8° study area, dual-season radar mosaics were used to map inundation extent and vegetation under both low-water and high-water conditions at 100-m resolution, producing the first high-resolution wetlands map for the region. Thematic accuracy of the mapping was assessed using high-resolution digital videography acquired during two aerial surveys of the Brazilian Amazon. A polygon-based segmentation and clustering was used to delineate wetland extent with an accuracy of 95%. A pixel-based classifier was used to map wetland vegetation and flooding state based on backscattering coefficients of two-season class combinations. Producer's accuracy for flooded and nonflooded forest classes ranged from 78% to 91%, with lower accuracy (63-65%) for flooded herbaceous vegetation. Seventeen percent of the study quadrat was occupied by wetlands, which were 96% inundated at high water and 26% inundated at low water. Flooded forest constituted nearly 70% of the entire wetland area at high water, but there are large regional variations in the proportions of wetland habitats. The SAR-based mapping provides a basis for improved estimates of the contribution of wetlands to biogeochemical and hydrological processes in the Amazon basin, a key question in the Large-Scale Biosphere-Atmosphere Experiment in Amazônia.  相似文献   

20.
A circumpolar representative and consistent wetland map is required for a range of applications ranging from upscaling of carbon fluxes and pools to climate modelling and wildlife habitat assessment. Currently available data sets lack sufficient accuracy and/or thematic detail in many regions of the Arctic. Synthetic aperture radar (SAR) data from satellites have already been shown to be suitable for wetland mapping. Envisat Advanced SAR (ASAR) provides global medium-resolution data which are examined with particular focus on spatial wetness patterns in this study. It was found that winter minimum backscatter values as well as their differences to summer minimum values reflect vegetation physiognomy units of certain wetness regimes. Low winter backscatter values are mostly found in areas vegetated by plant communities typically for wet regions in the tundra biome, due to low roughness and low volume scattering caused by the predominant vegetation. Summer to winter difference backscatter values, which in contrast to the winter values depend almost solely on soil moisture content, show expected higher values for wet regions. While the approach using difference values would seem more reasonable in order to delineate wetness patterns considering its direct link to soil moisture, it was found that a classification of winter minimum backscatter values is more applicable in tundra regions due to its better separability into wetness classes. Previous approaches for wetland detection have investigated the impact of liquid water in the soil on backscatter conditions. In this study the absence of liquid water is utilized.

Owing to a lack of comparable regional to circumpolar data with respect to thematic detail, a potential wetland map cannot directly be validated; however, one might claim the validity of such a product by comparison with vegetation maps, which hold some information on the wetness status of certain classes. It was shown that the Envisat ASAR-derived classes are related to wetland classes of conventional vegetation maps, indicating its applicability; 30% of the land area north of the treeline was identified as wetland while conventional maps recorded 1–7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号