首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study investigates the problem of estimating camera calibration parameters from image motion fields induced by a rigidly moving camera with unknown parameters, where the image formation is modeled with a linear pinhole-camera model. The equations obtained show the flow to be separated into a component due to the translation and the calibration parameters and a component due to the rotation and the calibration parameters. A set of parameters encoding the latter component is linearly related to the flow, and from these parameters the calibration can be determined.However, as for discrete motion, in general it is not possible to decouple image measurements obtained from only two frames into translational and rotational components. Geometrically, the ambiguity takes the form of a part of the rotational component being parallel to the translational component, and thus the scene can be reconstructed only up to a projective transformation. In general, for full calibration at least four successive image frames are necessary, with the 3D rotation changing between the measurements.The geometric analysis gives rise to a direct self-calibration method that avoids computation of optical flow or point correspondences and uses only normal flow measurements. New constraints on the smoothness of the surfaces in view are formulated to relate structure and motion directly to image derivatives, and on the basis of these constraints the transformation of the viewing geometry between consecutive images is estimated. The calibration parameters are then estimated from the rotational components of several flow fields. As the proposed technique neither requires a special set up nor needs exact correspondence it is potentially useful for the calibration of active vision systems which have to acquire knowledge about their intrinsic parameters while they perform other tasks, or as a tool for analyzing image sequences in large video databases.  相似文献   

2.
If a visual observer moves through an environment, the patterns of light that impinge its retina vary leading to changes in sensed brightness. Spatial shifts of brightness patterns in the 2D image over time are called optic flow. In contrast to optic flow visual motion fields denote the displacement of 3D scene points projected onto the camera’s sensor surface. For translational and rotational movement through a rigid scene parametric models of visual motion fields have been defined. Besides ego-motion these models provide access to relative depth, and both ego-motion and depth information is useful for visual navigation.In the past 30 years methods for ego-motion estimation based on models of visual motion fields have been developed. In this review we identify five core optimization constraints which are used by 13 methods together with different optimization techniques.1 In the literature methods for ego-motion estimation typically have been evaluated by using an error measure which tests only a specific ego-motion. Furthermore, most simulation studies used only a Gaussian noise model. Unlike, we test multiple types and instances of ego-motion. One type is a fixating ego-motion, another type is a curve-linear ego-motion. Based on simulations we study properties like statistical bias, consistency, variability of depths, and the robustness of the methods with respect to a Gaussian or outlier noise model. In order to achieve an improvement of estimates for noisy visual motion fields, part of the 13 methods are combined with techniques for robust estimation like m-functions or RANSAC. Furthermore, a realistic scenario of a stereo image sequence has been generated and used to evaluate methods of ego-motion estimation provided by estimated optic flow and depth information.  相似文献   

3.
Ambiguity in Structure from Motion: Sphere versus Plane   总被引:1,自引:1,他引:0  
If 3D rigid motion can be correctly estimated from image sequences, the structure of the scene can be correctly derived using the equations for image formation. However, an error in the estimation of 3D motion will result in the computation of a distorted version of the scene structure. Of computational interest are these regions in space where the distortions are such that the depths become negative, because in order for the scene to be visible it has to lie in front of the image, and thus the corresponding depth estimates have to be positive. The stability analysis for the structure from motion problem presented in this paper investigates the optimal relationship between the errors in the estimated translational and rotational parameters of a rigid motion that results in the estimation of a minimum number of negative depth values. The input used is the value of the flow along some direction, which is more general than optic flow or correspondence. For a planar retina it is shown that the optimal configuration is achieved when the projections of the translational and rotational errors on the image plane are perpendicular. Furthermore, the projection of the actual and the estimated translation lie on a line through the center. For a spherical retina, given a rotational error, the optimal translation is the correct one; given a translational error, the optimal rotational negative deptherror depends both in direction and value on the actual and estimated translation as well as the scene in view. The proofs, besides illuminating the confounding of translation and rotation in structure from motion, have an important application to ecological optics. The same analysis provides a computational explanation of why it is easier to estimate self-motion in the case of a spherical retina and why shape can be estimated easily in the case of a planar retina, thus suggesting that nature's design of compound eyes (or panoramic vision) for flying systems and camera-type eyes for primates (and other systems that perform manipulation) is optimal.  相似文献   

4.
Image flow is the velocity field in the image plane caused by the motion of the observer, objects in the scene, or apparent motion, and can contain discontinuities due to object occlusion in the scene. An algorithm that can estimate the image flow velocity field when there are discontinuities due to occlusions is described. The constraint line clustering algorithm uses a statistical test to estimate the image flow velocity field in the presence of step discontinuities in the image irradiance or velocity field. Particular emphasis is placed on motion estimation and segmentation in situations such as random dot patterns where motion is the only cue to segmentation. Experimental results on a demanding synthetic test case and a real image are presented. A smoothing algorithm for improving the velocity field estimate is also described. The smoothing algorithm constructs a smooth estimate of the velocity field by approximating a surface between step discontinuities. It is noted that the velocity field estimate can be improved using surface reconstruction between velocity field boundaries  相似文献   

5.
针对传统旋转运动参数估计都是采用两帧图像对齐技术,提出了为多帧运动参数估计方法,即使用多帧子空间约束技术.证明了当摄像机参数不变时,多帧运动参数集合可嵌入一个低维线性子空间上;使用奇异值分解方法来降低线性子空间的秩,用最小二乘技术求解所有帧的运动参数.该方法不需要恢复任何3D信息;由于多帧参数估计法比两帧有更多的约束,因此取得更精确的图像对齐效果.该方法可用小图像进行参数估计.  相似文献   

6.
In this paper we propose a new model,Frenet-Serret motion, for the motion of an observer in a stationary environment. This model relates the motion parameters of the observer to the curvature and torsion of the path along which the observer moves. Screw-motion equations for Frenet-Serret motion are derived and employed for geometrical analysis of the motion. Normal flow is used to derive constraints on the rotational and translational velocity of the observer and to compute egomotion by intersecting these constraints in the manner proposed in (Duri and Aloimonos 1991) The accuracy of egomotion estimation is analyzed for different combinations of observer motion and feature distance. We explain the advantages of controlling feature distance to analyze egomotion and derive the constraints on depth which make either rotation or translation dominant in the perceived normal flow field. The results of experiments on real image sequences are presented.The support of the Air Force Office of Scientific Research under Grant F49620-93-1-0039 is gratefully acknowledged.  相似文献   

7.
The structural features inherent in the visual motion field of a mobile robot contain useful clues about its navigation. The combination of these visual clues and additional inertial sensor information may allow reliable detection of the navigation direction for a mobile robot and also the independent motion that might be present in the 3D scene. The motion field, which is the 2D projection of the 3D scene variations induced by the camera‐robot system, is estimated through optical flow calculations. The singular points of the global optical flow field of omnidirectional image sequences indicate the translational direction of the robot as well as the deviation from its planned path. It is also possible to detect motion patterns of near obstacles or independently moving objects of the scene. In this paper, we introduce the analysis of the intrinsic features of the omnidirectional motion fields, in combination with gyroscopical information, and give some examples of this preliminary analysis. © 2004 Wiley Periodicals, Inc.  相似文献   

8.
On the Geometry of Visual Correspondence   总被引:1,自引:1,他引:0  
Image displacement fields—optical flow fields, stereo disparity fields, normal flow fields—due to rigid motion possess a global geometric structure which is independent of the scene in view. Motion vectors of certain lengths and directions are constrained to lie on the imaging surface at particular loci whose location and form depends solely on the 3D motion parameters. If optical flow fields or stereo disparity fields are considered, then equal vectors are shown to lie on conic sections. Similarly, for normal motion fields, equal vectors lie within regions whose boundaries also constitute conics. By studying various properties of these curves and regions and their relationships, a characterization of the structure of rigid motion fields is given. The goal of this paper is to introduce a concept underlying the global structure of image displacement fields. This concept gives rise to various constraints that could form the basis of algorithms for the recovery of visual information from multiple views.  相似文献   

9.
A recursive structure from motion algorithm based on optical flow measurements taken from an image sequence is described. It provides estimates of surface normal in addition to 3D motion and depth. The measurements are affine motion parameters which approximate the local flow fields associated with near-planar surface patches in the scene. These are integrated over time to give estimates of the 3D parameters using an extended Kalman filter. This also estimates the camera focal length and, so, the 3D estimates are metric. The use of parametric measurements means that the algorithm is computationally less demanding than previous optical flow approaches and the recursive filter builds in a degree of noise robustness. Results of experiments on synthetic and real image sequences demonstrate that the algorithm performs well.  相似文献   

10.
Three-dimensional scene flow   总被引:2,自引:0,他引:2  
Just as optical flow is the two-dimensional motion of points in an image, scene flow is the three-dimensional motion of points in the world. The fundamental difficulty with optical flow is that only the normal flow can be computed directly from the image measurements, without some form of smoothing or regularization. In this paper, we begin by showing that the same fundamental limitation applies to scene flow; however, many cameras are used to image the scene. There are then two choices when computing scene flow: 1) perform the regularization in the images or 2) perform the regularization on the surface of the object in the scene. In this paper, we choose to compute scene flow using regularization in the images. We describe three algorithms, the first two for computing scene flow from optical flows and the third for constraining scene structure from the inconsistencies in multiple optical flows.  相似文献   

11.
Presented are two methods for the determination of the parameters of motion of a sensor, given the vector flow field induced by an imaging system governed by a perspective transformation of a rigid scene. Both algorithms integrate global data to determine motion parameters. The first (the flow circulation algorithm) determines the rotational parameters. The second (the FOE search algorithm) determines the translational parameters of the motion independently of the first algorithm. Several methods for determining when the function has the appropriate form are suggested. One method involves filtering the function by a collection of circular-surround zero-mean receptive fields. The other methods project the function onto a linear space of quadratic polynomials and measures the distance between the two functions. The error function for the first two methods is a quadratic polynomial of the candidate position, yielding a very rapid search strategy  相似文献   

12.
Uncalibrated obstacle detection using normal flow   总被引:2,自引:0,他引:2  
This paper addresses the problem of obstacle detection for mobile robots. The visual information provided by a single on-board camera is used as input. We assume that the robot is moving on a planar pavement, and any point lying outside this plane is treated as an obstacle. We address the problem of obstacle detection by exploiting the geometric arrangement between the robot, the camera, and the scene. During an initialization stage, we estimate an inverse perspective transformation that maps the image plane onto the horizontal plane. During normal operation, the normal flow is computed and inversely projected onto the horizontal plane. This simplifies the resultant flow pattern, and fast tests can be used to detect obstacles. A salient feature of our method is that only the normal flow information, or first order time-and-space image derivatives, is used, and thus we cope with the aperture problem. Another important issue is that, contrasting with other methods, the vehicle motion and intrinsic and extrinsic parameters of the camera need not be known or calibrated. Both translational and rotational motion can be dealt with. We present motion estimation results on synthetic and real-image data. A real-time version implemented on a mobile robot, is described.  相似文献   

13.
The most basic visual capabilities found in living organisms are based on motion. Machine vision, of course, does not have to copy animal vision, but the existence of reliably functioning vision modules in nature gives us some reason to believe that it is possible for an artificial system to work in the same or a similar way. In this article it is argued that many navigational capabilities can be formulated as pattern recognition problems. An appropriate retinotopic representation of the image would make it possible to extract the information necessary to solve motion-related tasks through the recognition of a set of locations on the retina. This argument is illustrated by introducing a representation of image motion by which an observer's egomotion could be derived from information globally encoded in the image-motion field. In the past, the problem of determining a system's own motion from dynamic imagery has been considered as one of the classical visual reconstruction problems, wherein local constraints have been employed to compute from exact 2-D image measurements (correspondence, optical flow) the relative 3-D motion and structure of the scene in view. The approach introduced here is based on new global constraints defined on local normal-flow measurements—the spatio-temporal derivatives of the image-intensity function. Classifications are based on orientations of normal-flow vectors, which allows selection of vectors that form global patterns in the image plane. The position of these patterns is related to the 3-D motion of the observer, and their localization provides the axis of rotation and the direction of translation. The constraints introduced are utilized in algorithmic procedures formulated as search techniques. These procedures are very stable, since they are not affected by small perturbations in the image measurements. As a matter of fact, the solution to the two directions of translation and rotation is not affected, as long as the measurement of the sign of the normal flow is correct.Part of this work was accomplished while the author was visiting the Royal Institute of Technology, Stockholm, Sweden. The research was supported in part by ARPA, ONR, and Swedish National Science Foundation.  相似文献   

14.
Two novel systems computing dense three-dimensional (3-D) scene flow and structure from multiview image sequences are described in this paper. We do not assume rigidity of the scene motion, thus allowing for nonrigid motion in the scene. The first system, integrated model-based system (IMS), assumes that each small local image region is undergoing 3-D affine motion. Non-linear motion model fitting based on both optical flow constraints and stereo constraints is then carried out on each local region in order to simultaneously estimate 3-D motion correspondences and structure. The second system is based on extended gradient-based system (EGS), a natural extension of two-dimensional (2-D) optical flow computation. In this method, a new hierarchical rule-based stereo matching algorithm is first developed to estimate the initial disparity map. Different available constraints under a multiview camera setup are further investigated and utilized in the proposed motion estimation. We use image segmentation information to adopt and maintain the motion and depth discontinuities. Within the framework for EGS, we present two different formulations for 3-D scene flow and structure computation. One formulation assumes that initial disparity map is accurate, while the other does not. Experimental results on both synthetic and real imagery demonstrate the effectiveness of our 3-D motion and structure recovery schemes. Empirical comparison between IMS and EGS is also reported.  相似文献   

15.
The estimation of dense velocity fields from image sequences is basically an ill-posed problem, primarily because the data only partially constrain the solution. It is rendered especially difficult by the presence of motion boundaries and occlusion regions which are not taken into account by standard regularization approaches. In this paper, the authors present a multimodal approach to the problem of motion estimation in which the computation of visual motion is based on several complementary constraints. It is shown that multiple constraints can provide more accurate flow estimation in a wide range of circumstances. The theoretical framework relies on Bayesian estimation associated with global statistical models, namely, Markov random fields. The constraints introduced here aim to address the following issues: optical flow estimation while preserving motion boundaries, processing of occlusion regions, fusion between gradient and feature-based motion constraint equations. Deterministic relaxation algorithms are used to merge information and to provide a solution to the maximum a posteriori estimation of the unknown dense motion field. The algorithm is well suited to a multiresolution implementation which brings an appreciable speed-up as well as a significant improvement of estimation when large displacements are present in the scene. Experiments on synthetic and real world image sequences are reported  相似文献   

16.
Observability of 3D Motion   总被引:2,自引:2,他引:0  
This paper examines the inherent difficulties in observing 3D rigid motion from image sequences. It does so without considering a particular estimator. Instead, it presents a statistical analysis of all the possible computational models which can be used for estimating 3D motion from an image sequence. These computational models are classified according to the mathematical constraints that they employ and the characteristics of the imaging sensor (restricted field of view and full field of view). Regarding the mathematical constraints, there exist two principles relating a sequence of images taken by a moving camera. One is the epipolar constraint, applied to motion fields, and the other the positive depth constraint, applied to normal flow fields. 3D motion estimation amounts to optimizing these constraints over the image. A statistical modeling of these constraints leads to functions which are studied with regard to their topographic structure, specifically as regards the errors in the 3D motion parameters at the places representing the minima of the functions. For conventional video cameras possessing a restricted field of view, the analysis shows that for algorithms in both classes which estimate all motion parameters simultaneously, the obtained solution has an error such that the projections of the translational and rotational errors on the image plane are perpendicular to each other. Furthermore, the estimated projection of the translation on the image lies on a line through the origin and the projection of the real translation. The situation is different for a camera with a full (360 degree) field of view (achieved by a panoramic sensor or by a system of conventional cameras). In this case, at the locations of the minima of the above two functions, either the translational or the rotational error becomes zero, while in the case of a restricted field of view both errors are non-zero. Although some ambiguities still remain in the full field of view case, the implication is that visual navigation tasks, such as visual servoing, involving 3D motion estimation are easier to solve by employing panoramic vision. Also, the analysis makes it possible to compare properties of algorithms that first estimate the translation and on the basis of the translational result estimate the rotation, algorithms that do the opposite, and algorithms that estimate all motion parameters simultaneously, thus providing a sound framework for the observability of 3D motion. Finally, the introduced framework points to new avenues for studying the stability of image-based servoing schemes.  相似文献   

17.
A method of estimating range flow (space displacement vector field) on nonrigid as well as rigid objects from a sequence of range images is described. This method can directly estimate the deformable motion parameters by solving a system of linear equations that are obtained from substituting a linear transformation of nonrigid objects expressed by the Jacobian matrix into motion constraints based on an extension of the conventional scheme used in intensity image sequences. The range flow is directly computed by substituting these estimated motion parameters into the linear transformation. The algorithm is supported by experimental estimations of range flow on a sheet of paper, a piece of cloth, human skin, and a rubber balloon being inflated, using real range image sequences acquired by a video rate range camera  相似文献   

18.
We present a method to determine 3D motion and structure of multiple objects from two perspective views, using adaptive Hough transform. In our method, segmentation is determined based on a 3D rigidity constraint. Instead of searching candidate solutions over the entire five-dimensional translation and rotation parameter space, we only examine the two-dimensional translation space. We divide the input image into overlapping patches, and, for each sample of the translation space, we compute the rotation parameters of patches using least-squares fit. Every patch votes for a sample in the five-dimensional parameter space. For a patch containing multiple motions, we use a redescending M-estimator to compute rotation parameters of a dominant motion within the patch. To reduce computational and storage burdens of standard multidimensional Hough transform, we use adaptive Hough transform to iteratively refine the relevant parameter space in a “coarse-to-fine” fashion. Our method can robustly recover 3D motion parameters, reject outliers of the flow estimates, and deal with multiple moving objects present in the scene. Applications of the proposed method to both synthetic and real image sequences are demonstrated with promising results  相似文献   

19.
一种基于图像相位变化的动画算法   总被引:1,自引:0,他引:1  
W.T.Freeman等人提出了基于图像相位变化的动画算法。该文利用这种动画算法,结合光流场,在一个动画或视频的连续两帧图像之间实现了永不停止的动画。在灰度图像上实现这种动画的基础上,针对这种无移动动画对图像质量的损害,进行了灰度拉伸等后期处理,提高了动画的图像质量。另外,把这种算法扩展到彩色图像,并采用lαβ颜色空间,得到了更好的效果。最后,把这种动画通过纹理映射,应用到三维场景中。  相似文献   

20.
The classic approach to structure from motion entails a clear separation between motion estimation and structure estimation and between two-dimensional (2D) and three-dimensional (3D) information. For the recovery of the rigid transformation between different views only 2D image measurements are used. To have available enough information, most existing techniques are based on the intermediate computation of optical flow which, however, poses a problem at the locations of depth discontinuities. If we knew where depth discontinuities were, we could (using a multitude of approaches based on smoothness constraints) accurately estimate flow values for image patches corresponding to smooth scene patches; but to know the discontinuities requires solving the structure from motion problem first. This paper introduces a novel approach to structure from motion which addresses the processes of smoothing, 3D motion and structure estimation in a synergistic manner. It provides an algorithm for estimating the transformation between two views obtained by either a calibrated or uncalibrated camera. The results of the estimation are then utilized to perform a reconstruction of the scene from a short sequence of images.The technique is based on constraints on image derivatives which involve the 3D motion and shape of the scene, leading to a geometric and statistical estimation problem. The interaction between 3D motion and shape allows us to estimate the 3D motion while at the same time segmenting the scene. If we use a wrong 3D motion estimate to compute depth, we obtain a distorted version of the depth function. The distortion, however, is such that the worse the motion estimate, the more likely we are to obtain depth estimates that vary locally more than the correct ones. Since local variability of depth is due either to the existence of a discontinuity or to a wrong 3D motion estimate, being able to differentiate between these two cases provides the correct motion, which yields the least varying estimated depth as well as the image locations of scene discontinuities. We analyze the new constraints, show their relationship to the minimization of the epipolar constraint, and present experimental results using real image sequences that indicate the robustness of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号