首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microfabricated systems have recently become useful for routing particles to precise locations in microfluidic channels. In this paper we discuss the modeling, fabrication and characterization of such a platform that combines acoustic forces and ac dielectrophoresis (DEP). This system integrates a bulk lead zirconate titanate (PZT) slab with substrate patterned microelectrodes for DEP manipulation of particles. Moreover, a one-dimensional transmission line model is presented to understand the coupling of the acoustic and dielectrophoretic transducers with the microdevice. While the acoustic model does not predict the lateral coupling in the system, it does provide some insight into axial (thickness-mode) frequencies of operation. Experiments are also conducted in which particles were routed into a large (0.75 mm wide) microchannel and preconcentrated and focused into coarse bundles by coupling an acoustic wave into the channel. Subsequently, particles are further focused into single file particle streams using interdigitated DEP electrodes. This system can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.  相似文献   

2.
We present a new 3D dielectrophoresis-field-flow fraction (DEP-FFF) concept to achieve precise separation of multiple particles by using AC DEP force gradient in the z-direction. The interlaced electrode array was placed at the upstream of the microchannel, which not only focused the particles into a single particle stream to be at the same starting position for further separation, but also increased the spacing between each particle by the retard effect to reduce particle–particle aggregation. An inclined electrode was also designed in back of the focusing component to continuously and precisely separate different sizes of microparticles. Different magnitudes of DEP force are induced at different positions in the z-direction of the DEP gate, which causes different penetration times and positions of particles along the inclined DEP gate. 2, 3, 4, and 6?μm polystyrene beads were precisely sized fractionation to be four particle streams based on their different threshold DEP velocities that were induced by the field gradient in the z-direction when a voltage of 6.5?Vp–p was applied at a flow rate of 0.6?μl/min. Finally, Candida albicans were also sized separated to be three populations for demonstrating the feasibility of this platform in biological applications. The results showed that a high resolution sized fractionation (only 25% size difference) of multiple particles can be achieved in this DEP-based microfluidic device by applying a single AC electrical signal.  相似文献   

3.
This article presents a gray-scale light-induced dielectrophoresis (GS-LIDEP) method that induces the lateral displacements normal to the through-flow for continuous and passive separation of microparticles. In general, DEP force only can affect the particles within very local areas due to the electric field is exponentially decayed by the distance away from the electrodes. Unlike with conventional LIDEP, a broad-ranged electrical field gradient can easily be created by GS pattern illumination, which induces DEP forces with two directions for continuous separation of particles to their specific sub-channels. Candia albicans were effectively guided to the specific outlet with the efficiency of 90% to increase the concentration of the sample below the flow rate of 0.6?μl/min. 2 and 10?μm polystyrene particles can also be passively and well separated using the multi-step GS pattern through positive and negative DEP forces, respectively, under an applied voltage of 36?Vp–p at the frequency of 10?kHz. GS-LIDEP generated a wide-ranged DEP force that is capable of working on the entire area of the microchannel, and thus the mix of particles can be passively and continuously separated toward the opposite directions by the both positive and negative GS-LIDEP forces. This simple, low cost, and flexible separation/manipulation platform could be very promising for many applications, such as in-field detections/pretreatments.  相似文献   

4.
The detachment of a single rigid sphere in a cylindrical PDMS microchannel has been investigated for systems where the particle occupies greater than 50% of the channel cross-sectional area. The fluid velocity required to detach a particle adhering to a microchannel wall is a function of many variables; however, only the effect of particle size is considered in this paper. Experiments were performed for Reynolds numbers less than 0.1, and the ratio of particle diameter, d p, to channel dimension, D, was varied from 0.50 to 0.95 in a 230 μm channel. A nonionic surfactant (Tween 80) was used to minimize the effect of adhesive forces other than van der Waals forces. In addition, a simple force-balance model based on particle lift, buoyancy, drag, gravitational forces, and adhesion due to van der Waals forces has been developed to predict the velocity required for particle detachment. The predicted and experimentally measured velocities agree relatively well within the limit of experimental error. The detachment velocity was qualitatively found to increase with decreasing d p /D.  相似文献   

5.
Manipulation and separation of micro-sized particles, particularly biological particles, using the dielectrophoretic (DEP) force is an emerging technique in MEMS technology. This paper presents a DEP-based microsystem for the selective manipulation and separation of bioparticles using dielectrophoretic effects. The microfabricated DEP device consists of a sandwich structure, in which a microchannel with electrode array lining on its bottom is sandwiched between the substrate and the glass lid. Dielectrophoretic behavior of polystyrene particles with diameter of 4.3 μm was studied. Both positive DEP and negative DEP were observed. Particles under positive DEP were attracted to the edges of the electrodes, while those under negative DEP were repelled away from the electrodes and levitated at certain height above the electrodes (within a proper range of frequencies of the electric field). Levitation height of the particles was measured. It was demonstrated that the levitation height of a specific particle strongly depends on the combined contributions of a number of parameters, such as the frequency of the electric field, dielectric properties of the particles and the surrounding medium. Different particles can be separated and manipulated on the basis of their difference in these parameters.  相似文献   

6.
Optoelectronic tweezer (OET) has become a powerful and versatile technique for manipulating microparticles and cells using real-time reconfigurable optical patterns. However, detailed research in the dynamics of particles in an OET device is still scarce, and the multiple-particle interactions still need further quantitative investigation. In this study, a dynamics simulation model coupling optically induced dielectrophoretic force, interaction forces between particles, and hydrodynamic and sedimentary forces is established and numerically solved by utilizing a finite element method and a dynamics simulation frame for multi-microparticles’ positioning and assembling in a typical OET device. The spatial distributions of particles in the energized OET device before optically projecting are simulated first and the condition for particle chain formation is discussed. Then, the most representative ring-shaped optical pattern is applied, and the influences of optical-ring tweezer’ dimensions of inner radius R e and width d e on positioning and assembling effect are dynamically simulated and discussed for 5- and 2-μm radius particles. The simulation results indicate the particles inside and outside optical ring both undergo negative DEP and are distributed centre-symmetrically under the action of ring virtual tweezers. Average distance between the particle and center of ring (ADPC) at equilibrium and the system equilibrium time characterizing particle positioning effect dramatically increase for both 5- and 2-μm radius particles while R e increases from 35 to 55?μm. Specially, the captured particles will pile up and immediately form a three-dimensional micropyramid structure when R e approximately equals 25?μm for the 5-μm radius particle. Moreover, ADPC decreases very slowly for both two particle-sizes and the system equilibrium time of 2-μm radius particle vary more obviously than that of 5-μm radius particle with d e increasing from 10 to 30?μm. And the system equilibrium time for 2-μm radius particle is always larger than that for 5-μm radius particle. The primary simulation results are in good agreement with experimental observations; hence this dynamics simulation model can truly predict the particle-moving trajectory and equilibrium positions in an OET device. Moreover, this dynamics simulation holds promise for designing and optimizing optical patterns for accuracy in assembling particles in order to form a specific microstructure.  相似文献   

7.
Optical-induced dielectrophoresis (ODEP) is a novel technology used in the field of micro-/nanoparticles manipulation. The finite element method was applied for ODEP to research the particles motion in this paper. The potential distribution in the optoelectronic chip, which was induced by the incident light spot, was attained through electric current module in the COMSOL 4.3a. The particles motion was studied by coupling the module of electric current and particle tracing for fluid flow. Compared with molecular dynamics, the method proposed in the paper could effectively simplify the tedious programming. The polystyrene sphere (PS) particles with the radius of 2, 5, 10, and 15 μm were, respectively, used as the objects. The kinetic energy of the PS created by the dielectrophoresis (DEP) forces, the Stokes drag forces, the gravity forces, and the Brownian motion forces was calculated during the whole manipulation process. The simulation results indicated that with the decreasing in the particle size, the time on enrichment of the smaller PS would become longer. It was because that for the smaller PS, the effect of DEP forces would play less important role in the system. The conclusions in this paper could be used as a theoretical guidance in the further research.  相似文献   

8.
A dielectrophoretic (DEP) force is a result of the interaction between a nonuniform electric field and a polarizable particle. As the electric field is dominant at the micro/nano scale, this force can be effectively used to manipulate and control particles on this scale. We consider the motion of a particle on an invariant line with the suspending medium being a fluid with a low Reynolds number. This DEP system has two states and two parameters: the two states are indicative of the particle’s position and the induced dipole moment and the two parameters are α and c which depend upon the electric properties of the particle and the medium. The system is described by a set of ordinary differential equations with a quadratic term in the control variable (control being the applied voltage on the electrodes which induces the electric field) making the system non-affine in control. In the existing literature, the controllability studies of the DEP system have been restricted to reachability issues in the context of the time-optimal control problem. Here we present a comprehensive study of reachability, accessibility and controllability.  相似文献   

9.
We studied an imaging-based technique for the rapid quantification of bio-particles in a dielectrophoretic (DEP) microfluidic chip. Label-free particles could be successively sorted and trapped in a continuous flow manner under the applied alternating current (AC) conditions. Both 2 and 3 μm polystyrene beads at a concentration of 1.0 × 107 particles ml−1 could be rapidly quantified within 5 min in our DEP system. Capturing efficiencies higher than 95% could be 2 μm polystyrene beads with a linear flow speed, applied voltage and frequency of 0.89 mm s−1, 20 Vp-p and 5 MHz. Yeast cells (Candida glabrata and Candida albicans) could also be captured even at a lower concentration of 2.5 × 105 cells ml−1. Images of aggregative particles taken from the designed trapping area were further processed based on the intensity of relative greyscale followed by correction of the particle numbers. The imaging-based quantification method showed higher agreement than that of the conventional counting chamber method and proved the stability and feasibility of our AC DEP system.  相似文献   

10.
This article presents a microfluidic device (so called concentrator) for rapid and efficient concentration of micro/nanoparticles using direct current dielectrophoresis (DC DEP) in continuous fluid flow. The concentrator is composed of a series of microchannels constructed with PDMS-insulating microstructures to focus efficiently the electric field in the flow direction to provide high field strength and gradient. Multiple trapping regions are formed within the concentrator. The location of particle trapping depends on the strength of the electric field applied. Under the experimental conditions, both streaming movement and DEP trapping of particles simultaneously take place within the concentrator at different regions. The former occurs upstream and is responsible for continuous transport of the particles, whereas the latter occurs downstream and rapidly traps the particles delivered from upstream. The observation agrees with the distribution of the simulated electric field and DEP force. The performance of the device is demonstrated by successfully and effectively concentrating fluorescent nanoparticles. At the sufficiently high electric field, the device demonstrates a trapping efficiency of 100%, which means downstream DEP traps and concentrates all (100%) the incoming particles from upstream. The trapping efficiency of the device is further studied by measuring the fluorescence intensity of concentrated particles in the channel. Typically, the fluorescence intensity becomes saturated in Trap 1 by applying the voltage (400 V) for >2 min, demonstrating that rapid concentration of the nanoparticles (107 particles/ml) is achieved in the device. The microfluidic concentrator described can be implemented in applications where rapid concentration of targets is needed such as concentrating cells for sample preparation and concentrating molecular biomarkers for detection.  相似文献   

11.
This study presents a sheathless and portable microfluidic chip that is capable of high-throughput focusing bioparticles based on 3D travelling-wave dielectrophoresis (twDEP). High-throughput focusing is achieved by sustaining a centralized twDEP field normal to the continuous through-flow direction. Two twDEP electrode arrays are formed from upper and lower walls of the microchannel and extend to its center, which induce twDEP forces to provide the lateral displacements in two directions for focusing the bioparticles. Bioparticles can be focused to the center of the microchannel effectively by twDEP conveyance when the characteristic time due to twDEP conveying in the y direction is shorter than the residence time of the particles within twDEP electrode array. Red blood cells can be effectively focused into a narrow particle stream (~10 μm) below a critical flow rate of 10 μl/min (linear flow velocity ~5 mm/s), when under a voltage of 14 Vp–p at a frequency of 500 kHz is applied. Approximately 90% focusing efficiency for red blood cells can be achieved within two 6-mm-long electrode arrays when the flow rate is below 12 μl/min. Blood cells and Candida cells were also focused and sorted successfully based on their different twDEP mobilities. Compared to conventional 3D-paired DEP focusing, velocity is enhanced nearly four folds of magnitude. 3D twDEP provides the lateral displacements of particles and long residence time for migrating particles in a high-speed continuous flow, which breaks through the limitation of many electrokinetic cell manipulation techniques.  相似文献   

12.
The identification of non-cell objects in biological images is not a trivial task largely due to the difficulty in describing their characteristics in recognition systems. In order to better reduce the false positive rate caused by the presence of non-cell particles, we propose a novel approach using a local jet context features scheme combined with a two-tier object classification system. The newly proposed feature scheme, namely local jet context feature, integrates part of global features with the “local jet” features. The scheme aims to effectively describe the particle characteristics that are invariant to shift and rotation, and hence help to retain the critical shape information. The proposed two-tier particle classification strategy consists of a pre-recognition stage first and later a further filtering phase. Using the local jet context features coupled with a multi-class SVM classifier, the pre-recognition stage intends to assign the particles to their corresponding classes as many as possible. To further reduce the false positive particles, next a decision tree classifier based on shape-centered features is applied. Our experimental study shows that through the proposed two-tier classification strategy, we are able to achieve 85% of identification accuracy and 80% of F1 value in urinary particle recognition. The experiment results demonstrate that the proposed local jet context features are capable to discriminate particles in terms of shape and texture characteristics. Overall, the two-tier classification stage is found to be effective in reducing the false positive rate caused by non-cell particles.  相似文献   

13.
The focusing of biological and synthetic particles in microfluidic devices is a crucial step for the construction of many microstructured materials as well as for medical applications. The present study examines the feasibility of using contactless dielectrophoresis (cDEP) in an insulator-based dielectrophoretic (iDEP) microdevice to effectively focus particles. Particles 10?μm in diameter were introduced into the microchannel and pre-confined hydrodynamically by funnel-shaped insulating structures near the inlet. The particles were repelled toward the center of the microchannel by the negative DEP forces generated by the insulating structures. The microchip was fabricated based on the concept of cDEP. The electric field in the main microchannel was generated using electrodes inserted into two conductive micro-reservoirs, which were separated from the main microchannel by 20-μm-thick insulating barriers made of polydimethylsiloxane (PDMS). The impedance spectrum of the thin insulating PDMS barrier was measured to investigate its capacitive behavior. Experiments employing polystyrene particles were conducted to demonstrate the feasibility of the proposed microdevice. Results show that the particle focusing performance increased with increasing frequency of the applied AC voltage due to the reduced impedance of PDMS barriers at high frequencies. When the frequency was above 800?kHz, most particles were focused into a single file. The smallest width of focused particles distributed at the outlet was about 13.1?μm at a frequency of 1?MHz. Experimental results also show that the particle focusing performance improved with increasing applied electric field strength and decreasing inlet flow rate. The usage of the cDEP technique makes the proposed microchip mechanically robust and chemically inert.  相似文献   

14.
This paper describes a fundamental study on a pneumatic particle trap with a vibrator matrix. The particle trap device consisted of pneumatic vibrators and a trap chamber used to trap a particle. The entire structure was fabricated from polydimethylsiloxane (PDMS). The particle in the trap chamber was manipulated and trapped in the equilibrium region by exploiting the geometrical symmetry of the vibrators. The x-axial velocity of the viscous fluid induced by the deformation of the flexible diaphragms was eliminated or minimized at the center of two vibrators. Therefore, a particle could be trapped in the central capturing region by two or four vibrators. The trapping of static and dynamic single particles was observed to verify the proposed operational method.  相似文献   

15.
Dielectrophoresis, the induced motion of dielectric particles in non-uniform electric fields, enables the separation of suspended bio-particles based on their dimensions or dielectric properties. This work presents a microfluidic system, which utilises a combination of dielectrophoretic (DEP) and hydrodynamic drag forces to separate Lactobacillus bacteria from a background of yeasts. The performance of the system is demonstrated at two operating frequencies of 10?MHz and 100?kHz. At 10?MHz, we are able to trap the yeasts and bacteria at different locations of the microelectrodes as they experience different magnitudes of DEP force. Alternatively, at 100?kHz we are able to trap the bacteria along the microelectrodes, while repelling the yeasts from the microelectrodes and washing them away by the drag force. These separation mechanisms might be applicable to automated lab-on-a-chip systems for the rapid and label-free separation of target bio-particles.  相似文献   

16.
An infinitely rigid unitary mass (particle) is considered, moving on a planar region delimited by a rigid elliptical barrier (elliptical billiards) under the action of proper control forces. A class of periodic trajectories, involving an infinite sequence of non-smooth impacts between the mass and the barrier at fixed times, is found by using an LMIs based procedure. The jumps in the velocities at the impact times render difficult (if not impossible) to obtain the classical stability and attractivity properties for the dynamic system describing the tracking error behaviour. Hence, the tracking control problem is properly stated using notions similar to the quasi stability concept in V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, 6, World Scientific, 1989. A controller (whose state is subject to discontinuities) based on the internal model principle is shown to solve the proposed tracking problem, giving rise to control forces that are piecewise continuous function of time, with discontinuities at the desired impact times and at the impact times of the particle with the barrier.  相似文献   

17.
The development of massively parallel supercomputers provides a unique opportunity to advance the state of the art inN-body simulations. TheseN-body codes are of great importance for simulations in stellar dynamics and plasma physics. For systems with long-range forces, such as gravity or electromagnetic forces, it is important to increase the number of particles toN 107 particles. Significantly improved modeling ofN body systems can be expected by increasingN, arising from a more realistic representation of physical transport processes involving particle diffusion and energy and momentum transport. In addition, it will be possible to guarantee that physically significant portions of complex physical systems, such as Lindblad resonances of galaxies or current sheets in magnetospheres, will have an adequate population of particles for a realistic simulation. Particle-mesh (PM) and particle-particle particle-mesh (P3M) algorithms present the best prospects for the simulation of large-scaleN-body systems. As an example we present a two-dimensional PM simulation of a disk galaxy that we have developed on the Connection Machine-2, a massively parallel boolean hypercube supercomputer. The code is scalable to any CM-2 configuration available and, on the largest configuration, simulations withN = 128 M = 227 particles are possible in reasonable run times.  相似文献   

18.
This paper presents a microfluidic system for separation of microparticles based on the use of dielectrophoretic barriers, which are constructed by aligning two layers of microelectrode structure face-to-face on the top and bottom sides of the microchannel. The energized barriers tend to prevent the particles in the flow from passing through. However, particles may penetrate the barriers if a sufficiently high flow rate is used. The flow velocity at which the particles begin to penetrate the barrier is defined as threshold velocity. Different particles are of different threshold velocities so that they can be separated. In this paper, the electrodes are configured with open ends and aligned with a certain angle to the direction of the flow. Polystyrene microbeads of different sizes (i.e., 9.6 and 16 μm in diameter) are studied in the tests. Under the experimental conditions, two particle trajectories are observed: the 9.6 μm beads penetrate the barriers and move straightly toward the fluidic outlet, while the 16 μm beads snake their way along the electrode edges at a relatively low speed. The two subpopulations of particles are separated into spatial distance of ∼10 mm within tens of seconds. The system presents a rapid and dynamic separation process within a continuous flow.  相似文献   

19.
In this paper, a hybrid method for optimization is proposed, which combines the two local search operators in chemical reaction optimization with global search ability of for global optimum. This hybrid technique incorporates concepts from chemical reaction optimization and particle swarm optimization, it creates new molecules (particles) either operations as found in chemical reaction optimization or mechanisms of particle swarm optimization. Moreover, some technical bound constraint handling has combined when the particle update in particle swarm optimization. The effects of model parameters like InterRate, γ, Inertia weight and others parameters on performance are investigated in this paper. The experimental results tested on a set of twenty-three benchmark functions show that a hybrid algorithm based on particle swarm and chemical reaction optimization can outperform chemical reaction optimization algorithm in most of the experiments. Experimental results also indicate average improvement and deviate over chemical reaction optimization in the most of experiments.  相似文献   

20.
This work presents a novel method for continuous particle separation on the microscale by means of field-flow fractionation. It is based on the use of asymmetric interdigitated electrode arrays on the channel bottom, which induce an electro-osmotic channel flow when driven harmonically. Suspended particles are influenced by viscous fluid drag, sedimentation as well as by dielectrophoretic repulsion forces from the driving electrodes due to the emerging electric field. The significant dependance of the present forces on particle properties allows for separation with respect to particle density and size. This work analyzes electric and flow field by means of the finite element method and investigates the size and density dependent particle motion as a function of driving voltage and frequency of the electrode array. Matching these driving parameters permits the separation of sedimenting particles by their density independently from their size as well as the separation by size. Finally, channel designs are proposed which enable standard separation by means of selective particle mobility in the channel, separation in terms of opposing motion directions, as well as continuous lateral separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号