首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在图匹配模型中权重的设置对匹配性能有很大影响,但直接计算的权重往往不符合匹配图像的实际情况。为此,参照二次分配问题的图匹配学习思想,给出一阶和二阶最大权对集模型的权重学习计算方法。一阶最大权对集模型直接采用图像特征点作为图的顶点,而二阶最大权对集模型则采用某些特征点之间的连接边作为顶点,2个模型都可以通过Kuhn—Munkras算法求解。一阶最大权对集模型在本质上等价于二次分配问题的线性情况。在CMUHouse数据库上的图像匹配实验结果表明,二阶最大权对集模型优于一阶最大权对集模型,且两者在学习计算时的性能也优于直接计算的情况。  相似文献   

2.
Inexact graph matching by means of estimation of distribution algorithms   总被引:3,自引:0,他引:3  
Endika  Pedro  Isabelle  Aymeric  Claudia   《Pattern recognition》2002,35(12):2867-2880
Estimation of distribution algorithms (EDAs) are a quite recent topic in optimization techniques. They combine two technical disciplines of soft computing methodologies: probabilistic reasoning and evolutionary computing. Several algorithms and approaches have already been proposed by different authors, but up to now there are very few papers showing their potential and comparing them to other evolutionary computational methods and algorithms such as genetic algorithms (GAs). This paper focuses on the problem of inexact graph matching which is NP-hard and requires techniques to find an approximate acceptable solution. This problem arises when a nonbijective correspondence is searched between two graphs. A typical instance of this problem corresponds to the case where graphs are used for structural pattern recognition in images. EDA algorithms are well suited for this type of problems.

This paper proposes to use EDA algorithms as a new approach for inexact graph matching. Also, two adaptations of the EDA approach to problems with constraints are described as two techniques to control the generation of individuals, and the performance of EDAs for inexact graph matching is compared with the one of GAs.  相似文献   


3.
A special class of graphs is introduced in this paper. The graphs belonging to this class are characterised by the existence of unique node labels. A number of matching algorithms for graphs with unique node labels are developed. It is shown that problems such as graph isomorphism, subgraph isomorphism, maximum common subgraph (MCS) and graph edit distance (GED) have a computational complexity that is only quadratic in the number of nodes. Moreover, computing the median of a set of graphs is only linear in the cardinality of the set. In a series of experiments, it is demonstrated that the proposed algorithms run very fast in practice. The considered class makes the matching of large graphs, consisting of thousands of nodes, computationally tractable. We also discuss an application of the considered class of graphs and related matching algorithms to the classification and detection of abnormal events in computer networks.  相似文献   

4.
A binary linear programming formulation of the graph edit distance   总被引:2,自引:0,他引:2  
A binary linear programming formulation of the graph edit distance for unweighted, undirected graphs with vertex attributes is derived and applied to a graph recognition problem. A general formulation for editing graphs is used to derive a graph edit distance that is proven to be a metric, provided the cost function for individual edit operations is a metric. Then, a binary linear program is developed for computing this graph edit distance, and polynomial time methods for determining upper and lower bounds on the solution of the binary program are derived by applying solution methods for standard linear programming and the assignment problem. A recognition problem of comparing a sample input graph to a database of known prototype graphs in the context of a chemical information system is presented as an application of the new method. The costs associated with various edit operations are chosen by using a minimum normalized variance criterion applied to pairwise distances between nearest neighbors in the database of prototypes. The new metric is shown to perform quite well in comparison to existing metrics when applied to a database of chemical graphs.  相似文献   

5.
A linear programming (LP) approach is proposed for the weighted graph matching problem. A linear program is obtained by formulating the graph matching problem in L1 norm and then transforming the resulting quadratic optimization problem to a linear one. The linear program is solved using a simplex-based algorithm. Then, approximate 0-1 integer solutions are obtained by applying the Hungarian method on the real solutions of the linear program. The complexity of the proposed algorithm is polynomial time, and it is O(n 6L) for matching graphs of size n. The developed algorithm is compared to two other algorithms. One is based on an eigendecomposition approach and the other on a symmetric polynomial transform. Experimental results showed that the LP approach is superior in matching graphs than both other methods  相似文献   

6.
Unsupervised Learning for Graph Matching   总被引:1,自引:0,他引:1  
Graph matching is an essential problem in computer vision that has been successfully applied to 2D and 3D feature matching and object recognition. Despite its importance, little has been published on learning the parameters that control graph matching, even though learning has been shown to be vital for improving the matching rate. In this paper we show how to perform parameter learning in an unsupervised fashion, that is when no correct correspondences between graphs are given during training. Our experiments reveal that unsupervised learning compares favorably to the supervised case, both in terms of efficiency and quality, while avoiding the tedious manual labeling of ground truth correspondences. We verify experimentally that our learning method can improve the performance of several state-of-the art graph matching algorithms. We also show that a similar method can be successfully applied to parameter learning for graphical models and demonstrate its effectiveness empirically.  相似文献   

7.
A retrieval method for 3D CAD models based on the softassign quadratic assignment algorithm is presented in this paper. Firstly, retrieval models and target models are expressed as face adjacency graphs (FAGs) and thus 3D CAD model retrieval is turned to a graph matching problem. Secondly, vertex and edge compatibility matrices between the FAGs of a retrieval model and a target model are calculated. Then, an optimization objective function is created from compatibility matrices of a retrieval model and a target model, which serves as the similar metric for choosing vertex mapping matrix M of two models. Finally, the softassign quadratic assignment algorithm is introduced to find the optimal vertex mapping matrix M. Experimental results have shown that the proposed method supports 3D CAD model retrieval, and it is promising to meet the requirement of engineering applications.  相似文献   

8.
It is increasingly common to find graphs in which edges are of different types, indicating a variety of relationships. For such graphs we propose a class of reachability queries and a class of graph patterns, in which an edge is specified with a regular expression of a certain form, expressing the connectivity of a data graph via edges of various types. In addition, we define graph pattern matching based on a revised notion of graph simulation. On graphs in emerging applications such as social networks, we show that these queries are capable of finding more sensible information than their traditional counterparts. Better still, their increased expressive power does not come with extra complexity. Indeed, (1) we investigate their containment and minimization problems, and show that these fundamental problems are in quadratic time for reachability queries and are in cubic time for pattern queries. (2) We develop an algorithm for answering reachability queries, in quadratic time as for their traditional counterpart. (3) We provide two cubic-time algorithms for evaluating graph pattern queries, as opposed to the NP-completeness of graph pattern matching via subgraph isomorphism. (4) The effectiveness and efficiency of these algorithms are experimentally verified using real-life data and synthetic data.  相似文献   

9.
We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.  相似文献   

10.
A matching in a graph is a set of edges no two of which share a common vertex. In this paper we introduce a new, specialized type of matching which we call uniquely restricted matchings, originally motivated by the problem of determining a lower bound on the rank of a matrix having a specified zero/ non-zero pattern. A uniquely restricted matching is defined to be a matching M whose saturated vertices induce a subgraph which has only one perfect matching, namely M itself. We introduce the two problems of recognizing a uniquely restricted matching and of finding a maximum uniquely restricted matching in a given graph, and present algorithms and complexity results for certain special classes of graphs. We demonstrate that testing whether a given matching M is uniquely restricted can be done in O(|M||E|) time for an arbitrary graph G=(V,E) and in linear time for cacti, interval graphs, bipartite graphs, split graphs and threshold graphs. The maximum uniquely restricted matching problem is shown to be NP-complete for bipartite graphs, split graphs, and hence for chordal graphs and comparability graphs, but can be solved in linear time for threshold graphs, proper interval graphs, cacti and block graphs. Received April 12, 1998; revised June 21, 1999.  相似文献   

11.
深度学习在各种实际应用中取得了巨大成功,如何有效提高各种复杂的深度学习模型在硬件设备上的执行效率是该领域重要的研究内容之一.深度学习框架通常将深度学习模型表达为由基础算子构成的计算图,为了提高计算图的执行效率,传统的深度学习系统通常基于一些专家设计的子图替换规则,采用启发式搜索算法来优化计算图.它们的不足主要有:1)搜...  相似文献   

12.
Graph edit distance is a powerful and flexible method for error-tolerant graph matching. Yet it can only be calculated for small graphs in practice due to its exponential time complexity when considering unconstrained graphs. In this paper we propose a quadratic time approximation of graph edit distance based on Hausdorff matching. In a series of experiments we analyze the performance of the proposed Hausdorff edit distance in the context of graph classification and compare it with a cubic time algorithm based on the assignment problem. Investigated applications include nearest neighbor classification of graphs representing letter drawings, fingerprints, and molecular compounds as well as hidden Markov model classification of vector space embedded graphs representing handwriting. In many cases, a substantial speedup is achieved with only a minor loss in accuracy or, in one case, even with a gain in accuracy. Overall, the proposed Hausdorff edit distance shows a promising potential in terms of flexibility, efficiency, and accuracy.  相似文献   

13.
The assignment problem is a well-known graph optimization problem defined on weighted-bipartite graphs. The objective of the standard assignment problem is to maximize the summation of the weights of the matched edges of the bipartite graph. In the standard assignment problem, any node in one partition can be matched with any node in the other partition without any restriction. In this paper, variations of the standard assignment problem are defined with matching constraints by introducing structures in the partitions of the bipartite graph, and by defining constraints on these structures. According to the first constraint, the matching between the two partitions should respect the hierarchical-ordering constraints defined by forest and level graph structures produced by using the nodes of the two partitions respectively. In order to define the second constraint, the nodes of the partitions of the bipartite graph are distributed into mutually exclusive sets. The set-restriction constraint enforces the rule that in one of the partitions all the elements of each set should be matched with the elements of a set in the other partition. Even with one of these constraints the assignment problem becomes an NP-hard problem. Therefore, the extended assignment problem with both the hierarchical-ordering and set-restriction constraints becomes an NP-hard multi-objective optimization problem with three conflicting objectives; namely, minimizing the numbers of hierarchical-ordering and set-restriction violations, and maximizing the summation of the weights of the edges of the matching. Genetic algorithms are proven to be very successful for NP-hard multi-objective optimization problems. In this paper, we also propose genetic algorithm solutions for different versions of the assignment problem with multiple objectives based on hierarchical and set constraints, and we empirically show the performance of these solutions.  相似文献   

14.
In this paper, we propose a framework to address the problem of generic 2-D shape recognition. The aim is mainly on using the potential strength of skeleton of discrete objects in computer vision and pattern recognition where features of objects are needed for classification. We propose to represent the medial axis characteristic points as an attributed skeletal graph to model the shape. The information about the object shape and its topology is totally embedded in them and this allows the comparison of different objects by graph matching algorithms. The experimental results demonstrate the correctness in detecting its characteristic points and in computing a more regular and effective representation for a perceptual indexing. The matching process, based on a revised graduated assignment algorithm, has produced encouraging results, showing the potential of the developed method in a variety of computer vision and pattern recognition domains. The results demonstrate its robustness in the presence of scale, reflection and rotation transformations and prove the ability to handle noise and occlusions.  相似文献   

15.
A method for segmentation and recognition of image structures based on graph homomorphisms is presented in this paper. It is a model-based recognition method where the input image is over-segmented and the obtained regions are represented by an attributed relational graph (ARG). This graph is then matched against a model graph thus accomplishing the model-based recognition task. This type of problem calls for inexact graph matching through a homomorphism between the graphs since no bijective correspondence can be expected, because of the over-segmentation of the image with respect to the model. The search for the best homomorphism is carried out by optimizing an objective function based on similarities between object and relational attributes defined on the graphs. The following optimization procedures are compared and discussed: deterministic tree search, for which new algorithms are detailed, genetic algorithms and estimation of distribution algorithms. In order to assess the performance of these algorithms using real data, experimental results on supervised classification of facial features using face images from public databases are presented.  相似文献   

16.
图(Graph)在众多的科学领域和工程领域(如模式识别和计算机视觉)中具有广泛的应用 ,其具备 强大的信息表达能力。当图被用来表示物体结构时,衡量物体的相似程度将会被转化成计算两个图的相似度,这就是图匹配(Graph Matching)。近几十年来,对图匹配相关技术和算法的研究已经成为了研究领域内的一个重要课题,尤其是随着大数据时代的来临,图作为数据之间关系的一种表示形式,将会受到越来越多的关注。文中对图匹配技术的发展现状进行了综述,详细介绍了该技术的理论基础,梳理了解决图匹配问题的几种主流思路。最后,结合图匹配技术的一种具体应用对几种算法的性能进行了对比分析。  相似文献   

17.
Exact and approximate graph matching using random walks   总被引:3,自引:0,他引:3  
In this paper, we propose a general framework for graph matching which is suitable for different problems of pattern recognition. The pattern representation we assume is at the same time highly structured, like for classic syntactic and structural approaches, and of subsymbolic nature with real-valued features, like for connectionist and statistic approaches. We show that random walk based models, inspired by Google's PageRank, give rise to a spectral theory that nicely enhances the graph topological features at node level. As a straightforward consequence, we derive a polynomial algorithm for the classic graph isomorphism problem, under the restriction of dealing with Markovian spectrally distinguishable graphs (MSD), a class of graphs that does not seem to be easily reducible to others proposed in the literature. The experimental results that we found on different test-beds of the TC-15 graph database show that the defined MSD class "almost always" covers the database, and that the proposed algorithm is significantly more efficient than top scoring VF algorithm on the same data. Most interestingly, the proposed approach is very well-suited for dealing with partial and approximate graph matching problems, derived for instance from image retrieval tasks. We consider the objects of the COIL-100 visual collection and provide a graph-based representation, whose node's labels contain appropriate visual features. We show that the adoption of classic bipartite graph matching algorithms offers a straightforward generalization of the algorithm given for graph isomorphism and, finally, we report very promising experimental results on the COIL-100 visual collection.  相似文献   

18.
On the coding of ordered graphs   总被引:1,自引:0,他引:1  
X. Jiang  H. Bunke 《Computing》1998,61(1):23-38
Ordered graph and ordered graph isomorphism provide a natural representation of many objects in applications such as computational geometry, computer vision and pattern recognition. In the present paper we propose a coding procedure for ordered graphs that improves an earlier one based on Eulerian circuits of graphs in terms of both simplicity and computational efficiency. Using our coding approach, we show that the ordered graph isomorphism problem can be optimally solved in quadratic time, although no efficient (polynomial-bound) isomorphism algorithm for general graphs exists today. An experimental evaluation demonstrates the superior performance of the new method.  相似文献   

19.
The classical conditions of the existence of a perfect matching in bipartite graphs are used directly or indirectly to solve the assignment problem by the well-known algorithms. In the paper, we define a vector and an extended polymatroid for a bipartite graph so that the bipartite graph has a perfect matching if and only if the vector is the basis of the extended polymatroid. The study was partially sponsored by INTAS, grant 06-1000017-8909. __________ Translated from Kibernetika i Sistemnyi Analiz, No. 3, pp. 173–179, May–June 2008.  相似文献   

20.
Graph based pattern representation offers a versatile alternative to vectorial data structures. Therefore, a growing interest in graphs can be observed in various fields. However, a serious limitation in the use of graphs is the lack of elementary mathematical operations in the graph domain, actually required in many pattern recognition algorithms. In order to overcome this limitation, the present paper proposes an embedding of a given graph population in a vector space Rn. The key idea of this embedding approach is to interpret the distances of a graph g to a number of prototype graphs as numerical features of g. In previous works, the prototypes were selected beforehand with heuristic selection algorithms. In the present paper we take a more fundamental approach and regard the problem of prototype selection as a feature selection or dimensionality reduction problem, for which many methods are available. With several experiments we show the feasibility of graph embedding based on prototypes obtained from such feature selection algorithms and demonstrate their potential to outperform previous approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号