首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
K-means聚类算法简单高效,应用广泛。针对传统K-means算法初始聚类中心点的选择随机性导致算法易陷入局部最优以及K值需要人工确定的问题,为了得到最合适的初始聚类中心,提出一种基于距离和样本权重改进的K-means算法。该聚类算法采用维度加权的欧氏距离来度量样本点之间的远近,计算出所有样本的密度和权重后,令密度最大的点作为第一个初始聚类中心,并剔除该簇内所有样本,然后依次根据上一个聚类中心和数据集中剩下样本点的权重并通过引入的参数[τi]找出下一个初始聚类中心,不断重复此过程直至数据集为空,最后自动得到[k]个初始聚类中心。在UCI数据集上进行测试,对比经典K-means算法、WK-means算法、ZK-means算法和DCK-means算法,基于距离和权重改进的K-means算法的聚类效果更好。  相似文献   

2.
优化初始聚类中心的K-means聚类算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统K-means算法对初始中心十分敏感,聚类结果不稳定问题,提出了一种改进K-means聚类算法。该算法首先计算样本间的距离,根据样本距离找出距离最近的两点形成集合,根据点与集合的计算公式找出其他所有离集合最近的点,直到集合内数据数目大于或等于[α]([α]为样本集数据点数目与聚类的簇类数目的比值),再把该集合从样本集中删除,重复以上步骤得到K(K为簇类数目)个集合,计算每个集合的均值作为初始中心,并根据K-means算法得到最终的聚类结果。在Wine、Hayes-Roth、Iris、Tae、Heart-stalog、Ionosphere、Haberman数据集中,改进算法比传统K-means、K-means++算法的聚类结果更稳定;在Wine、Iris、Tae数据集中,比最小方差优化初始聚类中心的K-means算法聚类准确率更高,且在7组数据集中改进算法得到的轮廓系数和F1值最大。对于密度差异较大数据集,聚类结果比传统K-means、K-means++算法更稳定,更准确,且比最小方差优化初始聚类中心的K-means算法更高效。  相似文献   

3.
针对初始聚类中心不合理的选择会导致K-means算法的聚类结果局部最优,且降低聚类算法收敛速度的问题,提出一种基于近邻传播算法和最大最小距离算法联合计算初始聚类中心的算法(APMMD).该算法通过近邻传播算法从整个样本集中获得Kap(Kap>k)个具有代表性的候选中心点,再利用最大最小距离算法从Kap个候选中心点中选择k个初始聚类中心.在多个UCI数据集上实验,结果表明APMMD算法获得初始聚类中心应用于K-means聚类,迭代次数明显降低,聚类结果稳定且具有较高准确率.  相似文献   

4.
传统的K-means算法随机选取初始聚类中心,聚类结果不稳定,容易陷入局部最优解。针对聚类中心的敏感性,提出一种优化初始聚类中心的K-means算法。此算法利用数据集样本的分布特征计算样本点的密度并进行分类,在高密度区域中选择K个密度最大且相互距离超过某特定阈值的点作为初始聚类中心,并对低密度区域的噪声点单独处理。实验证明,优化后的算法能取得更好的聚类效果,且稳定性增强。  相似文献   

5.
李莲  罗可  周博翔 《计算机应用研究》2013,30(10):2916-2919
针对传统K-means聚类算法初始聚类中心随机选取、不能处理边界对象、效率低、聚类精度低等问题, 提出了一种新的K-means聚类算法。算法引入粒计算理论, 并依据密度和最大最小距离法选择初始聚类中心, 避免初始聚类中心在同一个类中, 结合粗糙集, 通过动态调整上近似集和边界集的权重因子, 以解决边界数据的聚类问题; 最后采用类间距和类内距均衡化准则函数作为算法终止判断条件, 来得到更好的聚类效果。实验结果表明:该算法具有较高的准确率, 迭代次数较少, 并降低了对噪声的敏感程度。  相似文献   

6.
K-means算法的聚类效果与初始聚类中心的选择以及数据中的孤立点有很大关联,具有很强的不确定性。针对这个缺点,提出了一种优化初始聚类中心选择的K-means算法。该算法考虑数据集的分布情况,将样本点分为孤立点、低密度点和核心点,之后剔除孤立点与低密度点,在核心点中选取初始聚类中心,孤立点不参与聚类过程中各类样本均值的计算。按照距离最近原则将孤立点分配到相应类中完成整个算法。实验结果表明,改进的K-means算法能提高聚类的准确率,减少迭代次数,得到更好的聚类结果。  相似文献   

7.
基于改进K均值聚类的异常检测算法   总被引:1,自引:0,他引:1  
左进  陈泽茂 《计算机科学》2016,43(8):258-261
通过改进传统K-means算法的初始聚类中心随机选取过程,提出了一种基于改进K均值聚类的异常检测算法。在选择初始聚类中心时,首先计算所有数据点的紧密性,排除离群点区域,在数据紧密的地方均匀选择K个初始中心,避免了随机性选择容易导致局部最优的缺陷。通过优化选取过程,使得算法在迭代前更加接近真实的聚类类簇中心,减少了迭代次数,提高了聚类质量和异常检测率。实验表明,改进算法在聚类性能和异常检测方面都明显优于原算法。  相似文献   

8.
K-means聚类算法可以实现对指纹库的软划分,提高定位系统的查询效率和定位精度。由于K-means算法聚类中心选择和聚类数设定的随机性,使其稳定性较差,影响定位系统的性能,在此提出采用融合聚类的方式对K-means算法进行优化。采用基于密度峰值的聚类算法得到指纹库中每一个指纹点的局部密度和局部距离,然后计算综合决策量γ;选取跳跃点前的前k个点作为K-means算法的初始聚类中心,同时确定最佳聚类数k。试验结果表明,融合聚类算法相较于传统K-means算法定位误差在1.5 m内的概率提高了约9%,定位系统的定位精度得到明显提高。  相似文献   

9.
传统的聚类算法通常将样本间的距离作为相似度的划分标准,因此距离计算方式的选择对于聚类的结果至关重要.但是传统的距离计算方法忽略了不同数据属性特征对聚类的影响.为了解决此问题,论文结合K-means提出了一种基于属性加权的快速K-means算法FAWK.首先,定义了一个反映属性特征差异的离散度函数对属性特征进行加权;其次,根据加权属性特征计算数据属性间的距离,并将所有属性的加权属性距离求和作为样本间的相似性距离;然后,将加权属性距离作为FAWK算法的划分标准对数据进行聚类;最后,将论文算法与现有方法在8个UCI数据集和LAMOST恒星光谱数据集进行实验测试与分析,实验结果表明FAWK算法具有迭代次数少、运行时间短、聚类结果准确率高且更接近真实数据集划分情况的特点.  相似文献   

10.
一种K-means聚类算法的改进与应用   总被引:1,自引:0,他引:1  
K-means算法是基于距离作为相似性度量的聚类算法,传统的K-means算法存在难以确定中心值个数、受噪声及孤立点影响较大的缺点。对此,利用类间相异度与类内相异度改进初始值K,以尽量减少人工干预;同时计算数据库中每一点与剩余点的距离和距离均和,将两者的大小比较作为识别孤立点和噪声点的依据,从而删除孤立点,减少对数据聚类划分的影响。最后将改进后的Kmeans算法应用于入侵检测系统并进行仿真实验,结果表明,基于改进的K-means算法的入侵检测系统一定程度上降低了误报率及误检率,提高了检测的准确率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号