首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
数据挖掘中的流形学习降维算法可以应用于图像分类等领域。提出一种面向图像分类的流形学习降维算法Mod-LLE(Modified Locally Linear Embedding)。该算法是针对高维数据的局部线性嵌入降维算法的改进,其整合了图像识别信息来更好地改善优化效果,达到在处理过程中保证原始数据固有的拓扑组成结构。以标准数据集作为案例进行测试。图像分类功能测试与降维性能测试结果表明:该算法对于人脸图像的分类精度比较高,降维性能良好。  相似文献   

2.
分类问题的一种流形学习算法   总被引:1,自引:0,他引:1  
提出了一种分类问题的流形学习算法.利用LLE算法的思想寻找样本的内在流形分布,并通过比较未知样本与正样本流形及负样本流形之间的距离来判定该样本的类别.实验显示,本文提出的流形学习算法的分类效果与SVM、Boosting等当前流行的机器学习算法相当.与此同时,该算法具有参数估计简单、参数影响不大等优点,该算法为分类问题的机器学习提供了一条新的途径.  相似文献   

3.
针对目前流形学习方法的嵌入效果非常敏感于局部邻域的选取方式,提出一种自适应邻域图的非线性数据降维方法。该方法考虑数据点周围的点分布信息,自适应地寻找最近邻域大小。不同于传统的邻域选取方法,此方法根据样本点周围的疏密程度来动态地获得最近邻域数,且所得到的各个样本点的邻域数是不等的;将每个样本点与其最近邻点连接,构建自适应邻域图进行有效降维。在人工生成数据集和人脸数据上的仿真结果表明,提出的方法得到了良好的降维效果。  相似文献   

4.
针对人脸研究领域中高维数据产生的计算复杂度问题,提出基于小波分解的流形学习方法,对高维数据进行降维,从而达到降低计算复杂度的目的。该方法对人脸图像进行不同层次的小波分解保留低频分量后再分别应用局部线性嵌入(LLE)及局部保持投影(LPP)两种流形学习算法。实验在Frey和CMU PIE人脸库上进行,给出人脸姿态和表情分布变化的实验结果,并分析了运行时间和经小波分解得到的低频子图像的能量。结果表明,基于小波分解的流形学习算法对于降低计算复杂度和保持图像信息是有效的。  相似文献   

5.
流形学习已成为机器学习和数据挖掘领域的研究热点。比如;算法LLE(Locally Linear Embedding)作为一种非线性降维算法有很好的泛化性能;被广泛地应用于图像分类和目标识别;但其仅仅假设了数据集处于单流形的情况。MM-LLE(Multiple Manifold Locally Linear Embedding)学习算法作为一种考虑多流形情况的改进算法;依然存在几点不足之处。因此;提出改进的MM-LLE算法;通过任意两类间的局部低维流形组合并构建分类器来提高分类精度;同时改进原算法计算最佳维度的方法。通过与算法ISOMAP、LLE以及MM-LLE比较分类精度;实验结果验证了改进算法的有效性。  相似文献   

6.
局部线性嵌入算法LLE(Locally Linear Embedding)可以有效地对图像的高维特征进行降维。针对处理样本分布不均匀及近邻因子选择时会出现的问题,在对高维数据降维时,近邻点的选择采用计算测地线距离而非传统的局部欧式距离,且近邻点的个数选择进行预先优化以达到更好的降维效果。实验表明,改进后的LLE算法具有更好的分类精确度,在图像分类过程中比单纯的LLE算法具有更好的分类性能。  相似文献   

7.
TRIMAP算法重新定义了图上距离的表达形式,并用近邻点对的测地距离的误差和作为衡量投影函数好坏的标准,通过这种方法可以较好地找到所需的从高维空间到低维空间转换的媒介,但是这种衡量标准不能很好地表达出TRIMAP中定义的图上距离与投影到低维空间中两点实际距离的对比关系。针对这个不足,采用了一个新的衡量标准表达式,定义一个参数m来代表对比关系,以此来解决这个缺陷,从而更好地获得最佳投影,提高识别率。实验结果表明,在ORL人脸图像的分类识别问题中获得了较好的识别性能。  相似文献   

8.
流形学习算法中的参数选择问题研究   总被引:1,自引:0,他引:1  
流形学习(Manifold Learning)算法是近年来发展起来的非线性降维机器学习算法.等度规特征映射Isomap(Isometric feature mapping)和局部线性嵌入LLE(Locally Linear Embedding)是两种典型的流形学习算法.通过实验比较和分析两种算法中邻接参数K和采样点数N的选取对降维结果以及执行时间的影响,实验结果表明Isomap对邻接参数K和采样点数N具有较高的容忍度,而LLE算法在计算速度上优势明显.  相似文献   

9.
流形学习方法中的LLE算法可以将高维数据在保持局部邻域结构的条件下降维到低维流形子空间中.并得到与原样本集具有相似局部结构的嵌入向量集合。LLE算法在数据降维处理过程中没有考虑样本的分类信息。针对这些问题进行研究,提出改进的有监督的局部线性嵌人算法(MSLLE),并利用MatLab对该改进算法的实现效果同LLE进行实验演示比较。通过实验演示表明,MSLLE算法较LLE算法可以有利于保持数据点本身内部结构。  相似文献   

10.
局部线性嵌入法(Locally Linear Embedding,LLE)是一种基于流形学习的非线性降维方法。针对LLE近邻点个数选取、样本点分布以及计算速度的问题,提出基于模糊聚类的改进LLE算法。算法根据聚类中心含有大量的信息这一特点,基于模糊聚类原理,采用改进的样本点距离计算方法,定义了近似重构系数,提高了LLE计算速度,改进了模糊近邻点个数的选取。实验结果表明,改进的算法有效地降低了近邻点个数对算法的影响,具有更好的降维效果和更高的计算速度。  相似文献   

11.
传统数据降维算法分为线性或流形学习降维算法,但在实际应用中很难确定需要哪一类算法.设计一种综合的数据降维算法,以保证它的线性降维效果下限为主成分分析方法且在流形学习降维方面能揭示流形的数据结构.通过对高维数据构造马尔可夫转移矩阵,使越相似的节点转移概率越大,从而发现高维数据降维到低维流形的映射关系.实验结果表明,在人造...  相似文献   

12.
针对人脸图片数量多、容易受噪声干扰,致使人脸识别的识别速度慢、准确率低的问题,提出一种基于局部线性嵌入极限学习机的人脸识别方法——LLE-ELM算法。利用局部线性嵌入(LLE)算法对人脸数据提取特征,最大限度保留原数据的特征结构,减少数据量,降低计算复杂;采用极限学习机(ELM)算法对提取特征后的数据进行分类;实现人脸识别,输出识别准确率和时长。通过在ORL数据库、Yale数据库、AR人脸库和CASIA-WEBFACE人脸库上的数值实验表明:与PCA、SVM、CNN算法对比,该算法具有较高的识别准确率和较快的识别速度。  相似文献   

13.
基于集成的非均衡数据分类主动学习算法   总被引:1,自引:0,他引:1  
当前,处理类别非均衡数据采用的主要方法之一就是预处理,将数据均衡化之后采取传统的方法加以训练.预处理的方法主要有过取样和欠取样,然而过取样和欠取样都有自己的不足,提出拆分提升主动学习算法SBAL( Split-Boost Active Learning),该算法将大类样本集根据非均衡比例分成多个子集,子集与小类样本集合并,对其采用AdaBoost算法训练子分类器,然后集成一个总分类器,并基于QBC( Query-by-committee)主动学习算法主动选取有效样本进行训练,基本避免了由于增加样本或者减少样本所带来的不足.实验表明,提出的算法对于非均衡数据具有更高的分类精度.  相似文献   

14.
针对局部线性嵌入算法LLE算法在当流形呈卷曲状、两个曲面间距离比较小时,可能造成流形结构在重构过程的扭曲,以及近邻个数K,降维维数D值选择过程中没有一致的标准导致的降维效果下降等问题,提出一种基于改进距离的并根据剩余方差来智能选取参数值的LLE算法。该算法通过引入新的距离度量公式来替代原有算法中的欧氏距离,并根据K,D值引入剩余方差来评估高维数据结构嵌入到低维空间的效果好坏。该方法在UCI数据集和yale人脸库中进行了验证。MATLAB编程实验结果表明,该方法在选取参数值和识别率方面比传统方法有更好的性能。  相似文献   

15.
实时数据流中标记样本所占比例较小,并且存在大量的噪声数据和冗余数据,导致数据流的实时分类准确率较低。针对这种情况,提出基于拉普拉斯回归主动学习的大数据流分类算法。为分类器设计相对支持度差异函数作为分类的决策方法,通过阈值判断当前数据流的标记样本量。设计基于约束规则的半监督主动学习算法,从无标记样本集选择信息量最丰富的样本。采用拉普拉斯正则最小二乘回归模型作为半监督学习的回归模型,迭代地扩展数据流的标记样本量。仿真结果表明,该算法有效地提高了数据流的分类准确率,并且满足实时性的需求。  相似文献   

16.
一种基于粗集理论的分类规则挖掘的实现方法   总被引:8,自引:0,他引:8  
研究各种高性能和高可扩展性的分类算法是数据挖掘面临的主要问题之一。基于粗集理论的分类规则挖掘是一种重要的方法,在分析有关算法的基础上提出一种改进方法,并通过实例证明了该方法的效率有所提高。此外,还提出了一种分类规则约简方法,使挖掘的结果更简洁、更易理解。  相似文献   

17.
一种基于Bayesian的图像分类算法   总被引:1,自引:0,他引:1  
提出了一种基于Bayesian的图像分类算法,该算法首先从原始数字图像出发,通过分析图像的特征分布特点,对图像的局部区域扫描分析,然后抽取目标图像的特征元素,得到其颜色、纹理、形状等特征,最后利用Bayesian分类器来实现图像的快速自动分类.实验结果表明,该算法能够有效提取图像的局部特征,从而快速、准确地实现图像分类.  相似文献   

18.
局部线性嵌入算法改进研究   总被引:1,自引:0,他引:1  
局部线性嵌入算法(Locally Linear Embedding LLE)是一种功能强大的数据降维方法,但它在处理稀疏数据源时的失效问题限制了其广泛应用,且至今没有一个完善的解决方案.为解决这一问题,从算法原理和执行过程两方面分析算法失效原因,把算法的两个优化过程联合优化,对算法进行改进.通过对S曲线稀疏采样模拟稀疏数据源,把改进前后的算法对样本点实验结果进行对比,验证了算法改进的有效性;同时,用改进后的算法处理人脸数据,展示了改进后算法的实用价值.改进后的算法将进一步促进局部线性嵌入在工程和研究领域的应用,极大地改善了算法的性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号