首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Depth estimation in a scene using image pairs acquired by a stereo camera setup, is one of the important tasks of stereo vision systems. The disparity between the stereo images allows for 3D information acquisition which is indispensable in many machine vision applications. Practical stereo vision systems involve wide ranges of disparity levels. Considering that disparity map extraction of an image is a computationally demanding task, practical real-time FPGA based algorithms require increased device utilization resource usage, depending on the disparity levels operational range, which leads to significant power consumption. In this paper a new hardware-efficient real-time disparity map computation module is developed. The module constantly estimates the precisely required range of disparity levels upon a given stereo image set, maintaining this range as low as possible by verging the stereo setup cameras axes. This enables a parallel-pipelined design, for the overall module, realized on a single FPGA device of the Altera Stratix IV family. Accurate disparity maps are computed at a rate of more than 320 frames per second, for a stereo image pair of 640 × 480 pixels spatial resolution with a disparity range of 80 pixels. The presented technique provides very good processing speed at the expense of accuracy, with very good scalability in terms of disparity levels. The proposed method enables a suitable module delivering high performance in real-time stereo vision applications, where space and power are significant concerns.  相似文献   

2.
An FPGA-based RGBD imager   总被引:1,自引:0,他引:1  
This paper describes a trinocular stereo vision system using a single chip of FPGA to generate the composite color (RGB) and disparity data stream at video rate, called the RGBD imager. The system uses the triangular configuration of three cameras for synchronous image capture and the trinocular adaptive cooperative algorithm based on local aggregation for smooth and accurate dense disparity mapping. We design a fine-grain parallel and pipelining architecture in FPGA for implementation to achieve a high computational and real-time throughput. A binary floating-point format is customized for data representation to satisfy the wide data range and high computation precision demands in the disparity calculation. Memory management and data bit-width control are applied in the system to reduce the hardware resource consumption and accelerate the processing speed. The system is able to produce dense disparity maps with 320 × 240 pixels in a disparity search range of 64 pixels at the rate of 30 frames per second.  相似文献   

3.
Many robotics and navigation systems utilizing stereopsis to determine depth have rigid size and power constraints and require direct physical implementation of the stereo algorithm. The main challenges lie in managing the communication between image sensor and image processor arrays, and in parallelizing the computation to determine stereo correspondence between image pixels in real-time. This paper describes the first comprehensive system level demonstration of a dedicated low-power analog VLSI (very large scale integration) architecture for stereo correspondence suitable for real-time implementation. The inputs to the implemented chip are the ordered pixels from a stereo image pair, and the output is a two-dimensional disparity map. The approach combines biologically inspired silicon modeling with the necessary interfacing options for a complete practical solution that can be built with currently available technology in a compact package. Furthermore, the strategy employed considers multiple factors that may degrade performance, including the spatial correlations in images and the inherent accuracy limitations of analog hardware, and augments the design with countermeasures.  相似文献   

4.
目的 立体匹配是计算机双目视觉的重要研究方向,主要分为全局匹配算法与局部匹配算法两类。传统的局部立体匹配算法计算复杂度低,可以满足实时性的需要,但是未能充分利用图像的边缘纹理信息,因此在非遮挡、视差不连续区域的匹配精度欠佳。为此,提出了融合边缘保持与改进代价聚合的立体匹配。方法 首先利用图像的边缘空间信息构建权重矩阵,与灰度差绝对值和梯度代价进行加权融合,形成新的代价计算方式,同时将边缘区域像素点的权重信息与引导滤波的正则化项相结合,并在多分辨率尺度的框架下进行代价聚合。所得结果经过视差计算,得到初始视差图,再通过左右一致性检测、加权中值滤波等视差优化步骤获得最终的视差图。结果 在Middlebury立体匹配平台上进行实验,结果表明,融合边缘权重信息对边缘处像素点的代价量进行了更加有效地区分,能够提升算法在各区域的匹配精度。其中,未加入视差优化步骤的21组扩展图像对的平均误匹配率较改进前减少3.48%,峰值信噪比提升3.57 dB,在标准4幅图中venus上经过视差优化后非遮挡区域的误匹配率仅为0.18%。结论 融合边缘保持的多尺度立体匹配算法有效提升了图像在边缘纹理处的匹配精度,进一步降低了非遮挡区域与视差不连续区域的误匹配率。  相似文献   

5.
In this paper, a new algorithm is presented to compute the disparity map from a stereo pair of images by using Belief Propagation (BP). While many algorithms have been proposed in recent years, the real-time computation of an accurate disparity map is still a challenging task. The computation time and run-time memory requirements are two very important factors for all real-time applications. The proposed algorithm divides the matching process into two steps; they are initial matching and disparity map refinement. Initial matching is performed by memory efficient hierarchical belief propagation algorithm that uses less than half memory at run-time and minimizes the energy function at much faster rate as compare to other hierarchical BP algorithms that makes it more suitable for real-time applications. Disparity map refinement uses a simple but very effective single-pass approach that improves the accuracy without affecting the computation cost. Experiments by using Middlebury dataset demonstrate that the performance of our algorithm is the best among other real-time stereo matching algorithms.  相似文献   

6.
Many vision applications require high-accuracy dense disparity maps in real-time and online. Due to time constraint, most real-time stereo applications rely on local winner-takes-all optimization in the disparity computation process. These local approaches are generally outperformed by offline global optimization based algorithms. However, recent research shows that, through carefully selecting and aggregating the matching costs of neighboring pixels, the disparity maps produced by a local approach can be more accurate than those generated by many global optimization techniques. We are therefore motivated to investigate whether these cost aggregation approaches can be adopted in real-time stereo applications and, if so, how well they perform under the real-time constraint. The evaluation is conducted on a real-time stereo platform, which utilizes the processing power of programmable graphics hardware. Six recent cost aggregation approaches are implemented and optimized for graphics hardware so that real-time speed can be achieved. The performances of these aggregation approaches in terms of both processing speed and result quality are reported.  相似文献   

7.
目的 近年来双目视觉领域的研究重点逐步转而关注其“实时化”策略的研究,而立体代价聚合是双目视觉中最为复杂且最为耗时的步骤,为此,提出一种基于GPU通用计算(GPGPU)技术的近实时双目立体代价聚合算法。方法 选用一种匹配精度接近于全局匹配算法的局部算法——线性立体匹配算法(linear stereo matching)作为代价聚合策略;结合线性代价聚合的原理,对其主要步骤(代价计算、均值滤波及系数求解等)的计算流程进行有针对性地并行优化。结果 对于相同的实验样本,用本文方法在NVIDA GTX780 实验平台上能在更短的时间计算出代价矩阵,与原有的CPU实现方法相比,代价聚合的效率平均有了数十倍的提升。结论 实时双目立体代价聚合方法,为在个人通用PC平台上实时获取高质量双目视觉深度信息提供了一个高效可靠的途径。  相似文献   

8.
NASA scenarios for lunar and planetary missions include robotic vehicles that function in both teleoperated and semi-autonomous modes. Under teleoperation, on-board stereo cameras may provide 3-D scene information to human operators via stereographic displays; likewise, under semi-autonomy, machine stereo vision may provide 3-D information for obstacle avoidance. In the past, the slow speed of machine stereo vision systems has posed a hurdle to the semi-autonomous scenario; however, recent work at JPL and other laboratories has produced stereo systems with high reliability and near real-time performance for low-resolution image pairs. In particular, JPL has taken a significant step by achieving the first autonomous, cross-country robotic traverses (of up to 100 meters) to use stereo vision, with all computing on-board the vehicle. Here, we describe the stereo vision system, including the underlying statistical model and the details of the implementation. The statistical and algorithmic aspects employ random field models of the disparity map, Bayesian formulations of single-scale matching, and area-based image comparisons. The implementation builds bandpass image pyramids and produces disparity maps from the 60×64 level of the pyramids at rates of up to two seconds per image pair. All vision processing is done in one 68020 augmented with Datacube image processing boards. We argue that the overall approach provides a unifying paradigm for practical, domain-independent stereo ranging. We close with a discussion of practical and theoretical issues involved in evaluating and extending the performance of the stereo system.  相似文献   

9.
We present a new feature based algorithm for stereo correspondence. Most of the previous feature based methods match sparse features like edge pixels, producing only sparse disparity maps. Our algorithm detects and matches dense features between the left and right images of a stereo pair, producing a semi-dense disparity map. Our dense feature is defined with respect to both images of a stereo pair, and it is computed during the stereo matching process, not a preprocessing step. In essence, a dense feature is a connected set of pixels in the left image and a corresponding set of pixels in the right image such that the intensity edges on the boundary of these sets are stronger than their matching error (which is the difference in intensities between corresponding boundary pixels). Our algorithm produces accurate semi-dense disparity maps, leaving featureless regions in the scene unmatched. It is robust, requires little parameter tuning, can handle brightnessdifferences between images, nonlinear errors, and is fast (linear complexity).  相似文献   

10.
Stereo matching is one of the most used algorithms in real-time image processing applications such as positioning systems for mobile robots, three-dimensional building mapping and recognition, detection and three-dimensional reconstruction of objects. In order to improve the performance, stereo matching algorithms often have been implemented in dedicated hardware such as FPGA or GPU devices. In this paper an FPGA stereo matching unit based on fuzzy logic is described. The proposed algorithm consists of three stages. First, three similarity parameters inherent to each pixel contained in the input stereo pair are computed. Then, the similarity parameters are sent to a fuzzy inference system which determines a fuzzy-similarity value. Finally, the disparity value is defined as the index which maximizes the fuzzy-similarity values (zero up to dmax). Dense disparity maps are computed at a rate of 76 frames per second for input stereo pairs of 1280 × 1024 pixel resolution and a maximum expected disparity equal to 15. The developed FPGA architecture provides reduction of the hardware resource demand compared to other FPGA-based stereo matching algorithms: near to 72.35% for logic units and near to 32.24% for bits of memory. In addition, the developed FPGA architecture increases the processing speed: near to 34.90% pixels per second and outperforms the accuracy of most of real-time stereo matching algorithms in the state of the art.  相似文献   

11.
The detection of surrounding obstacle-free space is an essential task for many intelligent automotive and robotic applications. In this paper we present a method to detect obstacle-free pathways in real-time using depth maps from a pair of stereo images. Depth maps are obtained by processing the disparity between left and right images from a stereo-vision system. The proposed technique assumes that depth of pixels in obstacle-free pathways should increase slightly and linearly from the bottom of the image to the top. The proposed real-time detection checks whether the depth of groups of image columns matches a linear model. Only pixels fulfilling the matching requirements are identified as obstacle-free pathways. Experimental results with real outdoor stereo images show that the method performance is promising.  相似文献   

12.
A phase-difference-based algorithm for disparity and optical flow estimation is implemented on a TI-C40-based parallel DSP system. The module performs real-time computation of disparity maps on images of size 128 × 128 pixels and computation of optical flows on images of size 64 × 64 pixels. This paper describes the algorithm and its parallel implementation. Processing times required for the computation of disparity maps and velocity fields and measures of the algorithm's performance are reported in detail.  相似文献   

13.
We propose in this paper a new method for real-time dense disparity map computing using a stereo pair of rectified images. Based on the neural network and Disparity Space Image (DSI) data structure, the disparity map computing consists of two main steps: initial disparity map estimation by combining the neuronal network and the DSI structure, and its refinement. Four improvements are introduced so that an accurate and fast result will be reached. The first one concerns the proposition of a new strategy in order to optimize the computation time of the initial disparity map. In the second one, a specific treatment is proposed in order to obtain more accurate disparity for the neighboring pixels to boundaries. The third one, it concerns the pixel similarity measure for matching score computation and it consists of using in addition to the traditional pixel intensities, the magnitude and orientation of the gradients providing more accuracy. Finally, the processing time of the method has been decreased consequently to our implementation of some critical steps on FPGAs. Experimental results on real datasets are conducted and a comparative evaluation of the obtained results relative to the state-of-art methods is presented.  相似文献   

14.
In this paper, we present an algorithm to combine edge information from stereo-derived disparity maps with edges from the original intensity/color image to improve the contour detection in images of natural scenes. After computing the disparity map, we generate a so-called “edge-combination image,” which relies on those edges of the original image that are also present in the stereo map. We describe an algorithm to identify corresponding intensity and disparity edges, which are usually not perfectly aligned due to errors in the stereo reconstruction. Our experiments show that the proposed edge-combination approach can significantly improve the segmentation results of an active contour algorithm. The text was submitted by the authors in English. Danijela Markovic graduated from the Faculty of Electronic Engineering, University of Nis, Serbia in 1997. She is currently a PhD student at the Institute for Software Technology and Interactive Systems, Vienna University of Technology. Her research interests are in computer vision and computer graphics, including stereo vision and curve/surface modeling. Particularly, she is interested in object segmentation, feature extraction, and tracking. Margrit Gelautz received her PhD degree in computer science from Graz University of Technology, Austria. She worked on stereo and interferometric image processing for radar remote sensing applications during a postdoctoral stay at Stanford University. Her current research interests include image and video processing for multimedia applications, with a focus on 3D vision and rendering techniques.  相似文献   

15.
Many applications rely on 3D information as a depth map. Stereo Matching algorithms reconstruct a depth map from a pair of stereoscopic images. Stereo Matching algorithms are computationally intensive, that is why implementing efficient stereo matching algorithms on embedded systems is very challenging for real-time applications.Indeed, like many vision algorithms, stereo matching algorithms have to set a lot of parameters and thresholds to work efficiently. When optimizing a stereo-matching algorithm, or changing algorithms parts, all those parameters have to be set manually. Finding the most efficient solution for a stereo-matching algorithm on a specific platform then becomes troublesome.This paper proposes an automatized method to find the optimal parameters of a dense stereo matching algorithm by learning from ground truth on a database in order to compare it with respect to any other alternative.Finally, for the C6678 platform, a map of the best compromise between quality and execution time is obtained, with execution times that are between 42 ms and 382 ms and output errors that are between 6% and 9.8%.  相似文献   

16.
Stereo matching is a challenging problem and highly accurate depth image is important in different applications. The main problem is to estimate the correspondence between two pixels in a stereo pair. To solve this problem, in the last decade, several cost aggregation methods aimed at improving the quality of stereo matching algorithms have been introduced. We propose a new cost aggregation method based on weighted guided image filtering (WGIF) for local stereo matching. The proposed algorithm solves multi-label problems in three steps. First, the cost volume is constructed using pixel-wise matching cost computation functions. Then, each slice of the cost volume is independently filtered using the WGIF, which substitutes for the smoothness term in the energy function. Finally, the disparity of any pixel is simply computed. The WGIF uses local weights based on a variance window of pixels in a guidance image for cost volume filtering. Experimental results using Middlebury stereo benchmark verify that the proposed method is effective due to a high quality cost volume filter.  相似文献   

17.
This paper presents an algorithm for the real-time computation of disparity using video stereo images captured by a stereo webcam. This algorithm is designed to provide both real-time throughput and robust disparity estimation for real-world applications where computation is limited to a pre-defined region-of-interest (ROI). More specifically, this algorithm is used as part of a hand-pair gesture recognition application where the disparity is computed for two ROI around a hand-pair identified by the segmentation component of the recognition application. The developed algorithm provides the required relative difference in disparity with background at high frame rates for the hand-pair gesture recognition application. The results obtained with an inexpensive commercial VGA stereo webcam show a robust disparity computation of 20?ms/frame enabling real-time hand-pair gesture recognition at 25?fps with >90% recognition rate for a maximum hand speed of 40?cm/s and for hand distances between 30 and 150?cm away from the camera.  相似文献   

18.
目的 从视差图反映影像景物深度变化并与LiDAR系统距离量测信息"同源"这一认识出发,提出一种基于视差互信息的立体航空影像与LiDAR点云自动配准方法.方法 本文方法分为3个阶段:第一、通过半全局匹配SGM(semi-gdabal matching)生成立体航空影像密集视差图;第二、利用航空影像内参数及初始配准参数(外方位元素)对LiDAR点云进行"针孔"透视成像,生成与待配准的立体航空影像空间分辨率、几何形变相接近且具有相同幅面大小的模拟灰度影像-LiDAR深度影像,以互信息作为相似性测度依据估计航空影像视差图与LiDAR深度影像的几何映射关系,进而以之为基础实现LiDAR点云影像概略相关;第三、以LiDAR点云影像概略相关获得的近似同名像点为观测值,以视差互信息为权重,实施摄影测量空间后方交会计算获得优化的影像外方位元素,生成新的LiDAR深度影像并重复上述过程,直至满足给定的迭代计算条件.结果 选取重叠度约60%、幅面大小7 216×5 428像素、空间分辨率约0.5 m的立体航空像对与平均点间距约1.5 m、水平精度约25 cm的LiDAR"点云"进行空间配准实验,配准精度接近1个像素.结论 实验结果表明,本文方法自动化程度高且配准精度适中,理论上适用于不同场景类型、相机内参数已知立体航空影像,具有良好的应用价值.  相似文献   

19.
针对传统置信传播(BP)立体匹配算法运算次数较多、效率低下的问题,提出了一种基于像素灰度绝对误差和(SAD)和BP的快速收敛立体匹配算法。首先使用SAD作为代价函数来计算初始视差值,并将可靠视差值作为约束项加入全局算法BP的能量函数中,进行全局的能量函数的优化;然后在优化过程中更新计算每个像素点的置信度时,考虑当前像素点自适应大小邻域内像素点对它的信息传递,而忽略距离较远的像素点的影响,从而减少了置信传播节点数并提高了置信度收敛的速度。实验结果表明,提出的算法在保持相近匹配精度的前提下,运行时间减少了50%~60%,提高了立体匹配效率,为实时应用打下了基础。  相似文献   

20.
Depth Discontinuities by Pixel-to-Pixel Stereo   总被引:9,自引:1,他引:8  
An algorithm to detect depth discontinuities from a stereo pair of images is presented. The algorithm matches individual pixels in corresponding scanline pairs, while allowing occluded pixels to remain unmatched, then propagates the information between scanlines by means of a fast postprocessor. The algorithm handles large untextured regions, uses a measure of pixel dissimilarity that is insensitive to image sampling, and prunes bad search nodes to increase the speed of dynamic programming. The computation is relatively fast, taking about 600 nanoseconds per pixel per disparity on a personal computer. Approximate disparity maps and precise depth discontinuities (along both horizontal and vertical boundaries) are shown for several stereo image pairs containing textured, untextured, fronto-parallel, and slanted objects in indoor and outdoor scenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号