共查询到20条相似文献,搜索用时 31 毫秒
1.
在基于几何模型的手势识别方法中,尺度空间特征检测是一种最常用的方法。由于传统方法涉及大量的高斯卷积运算,计算非常复杂。提出了一种快速的尺度空间特征检测方法,采用一组简单的矩形特征模板近似传统方法中复杂的高斯导数卷积模板,得到了尺度空间几何特征的快速检测子。通过对手势图像中Blob和Ridge结构的检测,得到手掌和手指结构的描述,进而完成手势识别。矩形特征模板的卷积可以用积分图进行快速计算,该方法使特征检测的速度得到了很大提高。在标准数据集和自然环境图像数据上的实验结果表明,该方法在保证识别准确率的同时,有效地提高了手势识别的实时性。 相似文献
2.
介绍了一种基于单目视觉的肤色干扰下的变形手势跟踪方法。根据跟踪过程中所用到的基本手势特征,提出了一种基于PGH(成对几何直方图)的静态手势识别方法。为了解决跟踪过程中的肤色干扰问题,实现了基于Kalman滤波器的手势预测跟踪。为了解决跟踪过程中的初始化问题,提出了一种基于层次结构的跟踪初始化解决方案。实验结果表明,该方法能够在肤色干扰的情况下有效地对变形手势进行跟踪,并能够满足基于视觉的实时人机交互的要求。 相似文献
3.
Sign language (SL), which is a highly visual–spatial, linguistically complete, and natural language, is the main mode of communication among deaf people. Described in this paper are two different American Sign Language (ASL) word recognition systems developed using artificial neural networks (ANN) to translate the ASL words into English. Feature vectors of signing words taken at five time instants were used in the first system, while histograms of feature vectors of signing words were used in the second system. The systems use a sensory glove, Cyberglove™, and a Flock of Birds® 3-D motion tracker to extract the gesture features. The finger joint angle data obtained from strain gauges in the sensory glove define the hand shape, and the data from the tracker describe the trajectory of hand movement. In both systems, the data from these devices were processed by two neural networks: a velocity network and a word recognition network. The velocity network uses hand speed to determine the duration of words. Signs are defined by feature vectors such as hand shape, hand location, orientation, movement, bounding box, and distance. The second network was used as a classifier to convert ASL signs into words based on features or histograms of these features. We trained and tested our ANN models with 60 ASL words for a different number of samples. These methods were compared with each other. Our test results show that the accuracy of recognition of these two systems is 92% and 95%, respectively. 相似文献
4.
基于SURF特征跟踪的动态手势识别算法 总被引:1,自引:0,他引:1
提出了一种基于加速鲁棒特征(SURF)跟踪的动态手势识别算法.其特征在于算法无需预先检测分割人手区域,仅通过跟踪统计相邻帧间匹配SURF特征点的移动主方向来刻画手势运动轨迹.提出采用经时间规整的轨迹方向数据流来建立动态手势模型,利用基于相关分析的数据流聚类方法实现动态手势的识别,大大提高动态手势识别速度.实验使用26个英文字母作为动态手势训练和识别,手势训练集和测试集的识别率分别为87.1%和84.6%,并成功用于实验室自主研制的侦察移动机器人Hunter的运动控制中,证实了该方法的有效性. 相似文献
5.
基于深度信息的实时手势识别和虚拟书写系统 总被引:1,自引:0,他引:1
鉴于无接触体感交互技术在人机交互领域的成功应用,提出了一种基于Kinect深度相机的实时隔空虚拟书写方法。结合颜色和深度数据检测和分割出手掌区域;进一步,通过修改的圆扫描转换算法获得手指的个数,以识别不同的手势指令;根据指尖检测从指尖的运动轨迹分割出独立的字符或汉字运动轨迹,并采用随机森林算法识别该字符或汉字。这种基于深度信息的手势检测和虚拟书写方法可以克服光照和肤色重叠的影响,可靠实时地检测和识别手势和隔空书写的文字,其识别率达到93.25%,识别速度达到25 frame/s。 相似文献
6.
针对普通摄像头手势识别系统易受复杂环境和光照条件等因素影响,存在对指尖点的漏判、误判问题,提出一种基于Kinect 骨骼信息与深度图像的掌心点提取和指尖点检测的手势识别方法。在DRVI平台上创建Kinect的接口控件,对Kinect传感器获取人体骨骼信息和深度图像进行分析,采用了坐标映射、图像分割、距离变换的关键技术和方法从深度图中分割出手势部分区域,对手势区域形态学处理,结合凸包和K-曲率算法检测不同手势中指尖点的个数和位置,计算不同手势凸包轮廓上的点集生成的HOG(Histogram of Oriented Gradient)特征描述子,最后利用特征描述子对预定的6种数字手势进行识别。经实验测试可以在复杂环境和不同光照情况下正确识别指尖点。 相似文献
7.
针对手势识别过程中单一手势特征对手势描述的不足,提出了一种基于改进Hu矩和灰度共生矩阵GLCM的手势识别方法 Hu-GLCM。首先利用肤色模型对采集的图像分割出手势区域;其次采用数学形态学和多边形拟合的方法提取手势的单连通轮廓,利用改进Hu-GLCM算法提取手势的几何形状特征和纹理特征并建立模板数据库;最后通过扩展的Canberra距离对手势图像进行识别和分类。实验结果表明,该改进算法对7种手势的平均识别率达到95%以上,且计算速度快,能够满足实时性的需求。 相似文献
8.
Gesture recognition is an important research in the field of human-computer interaction. Hand Gestures are strong variable and flexible, so the gesture recognition has always been an important challenge for the researchers. In this paper, we first outlined the development of gestures recognition, and different classification of gestures based on different purposes. Then we respectively introduced common methods used in the process of gesture segmentation, feature extraction and recognition. Finally, the gesture recognition was summarized and the studying prospects were given. 相似文献
9.
许凯王敏 《计算机工程与科学》2014,36(5):941-946
提出了一种新的手势识别方法,该方法从深度图像中提取手形轮廓,通过计算手形轮廓与轮廓形心点的距离,使用离散傅里叶变换获得手势的表观特征,引入径向基核的支持向量机识别手势。建立了一个常见的10种手势的数据集,测试获得了97.9%的识别率。 相似文献
10.
This paper describes a person identifcation method for a mobile robot which performs specifc person following under dynamic complicated environments like a school canteen where many persons exist.We propose a distance-dependent appearance model which is based on scale-invariant feature transform(SIFT) feature.SIFT is a powerful image feature that is invariant to scale and rotation in the image plane and also robust to changes of lighting condition.However,the feature is weak against afne transformations and the identifcation power will thus be degraded when the pose of a person changes largely.We therefore use a set of images taken from various directions to cope with pose changes.Moreover,the number of SIFT feature matches between the model and an input image will decrease as the person becomes farther away from the camera.Therefore,we also use a distance-dependent threshold.The person following experiment was conducted using an actual mobile robot,and the quality assessment of person identifcation was performed. 相似文献
11.
基于视觉的多特征手势识别 总被引:8,自引:0,他引:8
手势是一种自然直观的交互方式,基于视觉的手势识别是实现新一代人机交互的关键技术。本文在已有的手势识别技术基础上,从手势分割及手势表示两方面着手,提出了一种单目视觉下的手势识别方法。利用颜色特征检测肤色区域,成功分割出人手;利用人手的轮廓及凸缺陷检测指尖,再利用指尖的数目和方位来表示一个手势,进而结合轮廓长度和面积等几何特征完成手势识别。传统的指尖检测方法需要遍历并扫描手掌外轮廓,计算量大,本文通过凸缺陷检测指尖,减少了计算量,提高了指尖检测的速度。实验结果表明,本文的方法具有很好的鲁棒性及实时性,能适应环境的变化。 相似文献
12.
A dilemma, caused by data variation, exists in research into signer-independent sign language recognition. An effective way to solve this dilemma, and thereby help push the research forward, is to understand sign language from the perspectives of human kinesics and linguistics. This paper, based on the principles of movement observation science, specifically Laban Movement Analysis (LMA), presents a summary of the factors causing sign language data variation, proposes the definition of, and a method for describing, sign language effort elements, and then provides a strategy for standardizing signer-independent sign language data. The standardized data are to be used for training and recognition. The method presented in this paper has been assessed under different experimental conditions, and the results show that the recognition accuracy is greatly increased. 相似文献
13.
针对在基于视觉的手势识别系统中手势轮廓难以准确提取问题,本文提出一种融合GVF Snake和肤色模型的手势轮廓提取方法.首先把图像由RGB空间转换到YCb'Cr’空间,利用该空间上的椭圆肤色模型检测出手势区域并提取手势轮廓作为GVF Snake模型的初始轮廓曲线;然后根据图像分块思想把检测出的手势所在图像区域分割出来,并计算该图像分块的梯度值;最后在图像分块和初始轮廓曲线的基础上通过GVF Snake模型迭代搜素准确提取手势轮廓.实验结果表明,本文提出的手势轮廓提取方法无需人工参与,准确性上优于肤色模型、传统Snake模型,实时性上优于GVF Snake模型,满足手势识别系统中手势轮廓提取的实时性和准确性要求.检测准确、实时性高. 相似文献
14.
15.
The manual signs in sign languages are generated and interpreted using three basic building blocks: handshape, motion, and place of articulation. When combined, these three components (together with palm orientation) uniquely determine the meaning of the manual sign. This means that the use of pattern recognition techniques that only employ a subset of these components is inappropriate for interpreting the sign or to build automatic recognizers of the language. In this paper, we define an algorithm to model these three basic components form a single video sequence of two-dimensional pictures of a sign. Recognition of these three components are then combined to determine the class of the signs in the videos. Experiments are performed on a database of (isolated) American Sign Language (ASL) signs. The results demonstrate that, using semi-automatic detection, all three components can be reliably recovered from two-dimensional video sequences, allowing for an accurate representation and recognition of the signs. 相似文献
16.
17.
基于手势识别的人机交互发展研究 总被引:1,自引:1,他引:1
任雅祥 《计算机工程与设计》2006,27(7):1201-1204
近年来手势识别技术的快速发展,基于手势识别技术的人机交互应用系统的建立使得人机交互的发展前景广阔.从手形、手势和手形手势的建模出发,介绍了模板匹配、特征提取、神经网络和隐马尔可夫模型4种手势识别的方法,并且综述了基于手势识别技术人机交互的发展,详细介绍了3类人机交互系统:漫游型系统、编辑型系统和操作型系统. 相似文献
18.
作为人机交互的重要方式,手势交互和识别由于其具有的高自由度而成为计算机图形学、虚拟现实与人机交互等领域的研究热点.传统直接提取手势轮廓或手部关节点位置信息的手势识别方法,其提取的特征通常难以准确表示手势之间的区别.针对手势识别中不同手势具有的高自由度以及由于手势图像分辨率低、背景杂乱、手被遮挡、手指形状尺寸不同、个体差异性导致手势特征表示不准确等问题,本文提出了一种新的融合关节旋转特征和指尖距离特征的手势特征表示与手势识别方法.首先从手势深度图中利用手部模板并将手部看成链段结构提取手部20个关节点的3D位置信息;然后利用手部关节点位置信息提取四元数关节旋转特征和指尖距离特征,该表示构成了手势特征的内在表示;最后利用一对一支持向量机对手势进行有效识别分类.本文不仅提出了一种新的手势特征表示与提取方法,该表示融合了关节旋转信息和指尖距离特征;而且从理论上证明了该特征表示能唯一地表征手势关节点的位置信息;同时提出了基于一对一SVM多分类策略进行手势分类与识别.对ASTAR静态手势深度图数据集中8类中国数字手势和21类美国字母手势数据集分别进行了实验验证,其分类识别准确率分别为99.71%和85.24%.实验结果表明,本文提出的基于关节旋转特征和指尖距离特征的融合特征能很好地表示不同手势的几何特征,能准确地表征静态手势并进行手势识别. 相似文献
19.
20.
研究了一种基于人体手势识别的机器人控制系统.首先,利用图像识别技术,通过YCr Cb皮肤颜色模型提取手掌并分析指尖和手心的相关信息;其次,利用帧差法对手掌运动趋势和简单的手势信息进行识别;最后,通过无线蓝牙串口将识别出来的手势信号发送给机器人,以达到手势控制机器人的目的.系统是在VS2010下利用Open CV计算机视觉库进行编译完成的,实现了通过简单的手势信息控制机器人的目的,从而摆脱了人机交互时必须依靠物理接触的限制.实验结果表明,该系统可以实现对机器人前进、后退、左转、右转、停止、加速的实时控制,对手势信息的识别率在90%以上.对进一步探索机器学习、自主识别等相关领域有着较高的参考价值. 相似文献