首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Estimation of forest cover change is important for boreal forests, one of the most extensive forested biomes, due to its unique role in global timber stock, carbon sequestration and deposition, and high vulnerability to the effects of global climate change. We used time-series data from the MODerate Resolution Imaging Spectroradiometer (MODIS) to produce annual forest cover loss hotspot maps. These maps were used to assign all blocks (18.5 by 18.5 km) partitioning the boreal biome into strata of high, medium and low likelihood of forest cover loss. A stratified random sample of 118 blocks was interpreted for forest cover and forest cover loss using high spatial resolution Landsat imagery from 2000 and 2005. Area of forest cover gross loss from 2000 to 2005 within the boreal biome is estimated to be 1.63% (standard error 0.10%) of the total biome area, and represents a 4.02% reduction in year 2000 forest cover. The proportion of identified forest cover loss relative to regional forest area is much higher in North America than in Eurasia (5.63% to 3.00%). Of the total forest cover loss identified, 58.9% is attributable to wildfires. The MODIS pan-boreal change hotspot estimates reveal significant increases in forest cover loss due to wildfires in 2002 and 2003, with 2003 being the peak year of loss within the 5-year study period. Overall, the precision of the aggregate forest cover loss estimates derived from the Landsat data and the value of the MODIS-derived map displaying the spatial and temporal patterns of forest loss demonstrate the efficacy of this protocol for operational, cost-effective, and timely biome-wide monitoring of gross forest cover loss.  相似文献   

2.
Burnt area is a critical parameter for estimating emissions of greenhouse gases associated with biomass burning. Several burnt area products (BAPs) derived from Earth Observation satellites/sensors have been released; these are based on different spatial resolutions and derived using different methodologies so that accuracies can vary amongst them. This study validates a global (MODIS) and a national (AVHRR) BAP across Australian southern forests using two reference datasets: state fire histories (SFHs) from 2000 to 2013 and a forest cover map derived through high resolution air photo interpretation (API). The spatial and temporal agreement between fires in the BAPs and reference SFH were analysed based on 2610 sample points representative of Australian southern forest types (successful detection was evaluated according to fire type: planned burn vs. wildfire, size of fire, and land tenure). Results show that both BAPs were most successful when identifying large wildfires (>5000 ha). Overall accuracy for AVHRR and MODIS was 73.9% and 62.5%, respectively. When compared to the API derived forest cover map as reference dataset, both products achieved higher overall accuracies (94.1% for AVHRR and 87.1% for MODIS); an expected result given that the fires detected in this dataset are known to be observable using Earth observation data. But regardless of reference dataset, the AVHRR BAP which is tailored to Australian conditions achieved better results than the MODIS global BAP. Also, the AVHRR archive in Australia goes back to 1988, which is an important consideration for calculating wildfire history for greenhouse gas accounting.  相似文献   

3.
The Russian Academy of Sciences' Space Research Institute has developed a new burnt area mapping method and a five‐year database to estimate biomass burning in the Earth's entire boreal region. The mapping method involved SPOT‐VEGETATION time‐series data analysis to detect inter‐annual vegetation changes combined with MODIS hot‐spot data to distinguish fire‐related changes from other types of disturbances. The burnt area database actually covers the boreal biome for the period 2000–2004 with 1 km spatial resolution and 10‐day time frequency, while an automatic data processing chain allows this database to be updated continuously. The accuracy assessment involved comparison with Landsat‐ETM+ derived burnt area estimates for Northern Eurasia and ground data for Canada. This Letter describes the satellite sensor data processing method and the results of the accuracy assessment of the burnt area database and provides burnt area statistics for the boreal region countries.  相似文献   

4.
A wide range of techniques are being developed to map vegetation cover types using multi-date imagery from the Advanced Very High Resolution Radiometer. To date, these techniques do not account for severe constraints which exist for the world's boreal forest. Using composite AVHRR imagery collected over Alaska, we demonstrate how several factors influence the time-series normalized vegetation difference index (NDVI) signatures developed for the boreal forests in this region, including the effects of: (1) clouds and atmospheric haze; (2) climate variations on plant phenology; (3) fire on forest succession; and (4) forest stand patch size with respect to system resolution. Based on the analysis of AVHRR composite data from Alaska, the results of this study show: (1) clouds and haze have distinct effects on the intra-seasonal NDVI signature; (2) there are significant interseasonal variations in NDVI signatures caused by variations in the length of the growing season as well as variations in precipitation and moisture during the growing season; (3) disturbances affect large areas in interior Alaska and forest succession after fire results in significant variations in the inter-seasonal NDVI signatures; and (4) much of the landscape in interior Alaska consists of heterogeneous patches of forest which are much smaller than the resolution cell size of the AVHRR sensor, resulting in significant sub-pixel mixing. Based on these findings, the overall conclusion of this study is scientists using AVHRR to map land cover types in boreal regions must develop approaches which account for these sources of variation.  相似文献   

5.
Leaf area index (LAI) of boreal ecosystems was estimated with optical instruments at the Laxemar and the Forsmark investigation areas in Sweden. The aim was to study relationships between LAI and normalized difference vegetation index (NDVI), and to evaluate the applicability of the moderate resolution imaging spectroradiometer (MODIS) LAI product for small boreal regions. Relationships between optically-estimated LAI and NDVI were significant for different forest types in Laxemar and for Forsmark, effective LAI was correlated to the NDVI for all sites. NDVI-estimated LAI was used for evaluating accuracy of the MODIS LAI product and the comparison showed no correlation in Forsmark, whereas they were correlated in Laxemar. MODIS LAI was, on average, 2.28 higher than NDVI-based LAI, and it showed larger scatter. Scale issues were the main explanation for the high MODIS LAI, since heterogeneous landscapes with open areas were seen as forest in the large pixels of the MODIS LAI product.  相似文献   

6.
The objective of this paper is to present a method for mapping burnt areas in Brazilian Amazonia using Terra MODIS data. The proposed approach is based on image segmentation of the shade fraction images derived from MODIS, using a non‐supervised classification algorithm followed by an image editing procedure for minimizing misclassifications. Acre State, the focus of this study, is located in the western region of Brazilian Amazonia and undergoing tropical deforestation. The extended dry season in 2005 affected this region creating conditions for extensive forest fires in addition to fires associated with deforestation and land management. The high temporal resolution of MODIS provides information for studying the resulting burnt areas. Landsat 5 TM images and field observations were also used as ground data for supporting and validating the MODIS results. Multitemporal analysis with MODIS showed that about 6500 km2 of land surface were burnt in Acre State. Of this, 3700 km2 corresponded to the previously deforested areas and 2800 km2 corresponded to areas of standing forests. This type of information and its timely availability are critical for regional and global environmental studies. The results showed that daily MODIS sensor data are useful sources of information for mapping burnt areas, and the proposed method can be used in an operational project in Brazilian Amazonia.  相似文献   

7.
Information regarding the extent, timing and magnitude of forest disturbance are key inputs required for accurate estimation of the terrestrial carbon balance. Equally important for studying carbon dynamics is the ability to distinguish the cause or type of forest disturbance occurring on the landscape. Wildfire and timber harvesting are common disturbances occurring in boreal forests, with each having differing carbon consequences (i.e., biomass removed, recovery rates). Development of methods to not only map, but distinguish these types of disturbance with satellite data will depend upon an improved understanding of their distinctive spectral properties. In this study, we mapped wildfires and clearcut harvests occurring in a Landsat time series (LTS) acquired in the boreal plains of Saskatchewan, Canada. This highly accurate reference map (kappa = 0.91) depicting the year and cause of historical disturbances was used to determine the spectral and temporal properties needed to accurately classify fire and clearcut disturbances. The results showed that spectral data from the short-wave infrared (SWIR; e.g., Landsat band 5) portion of the electromagnetic spectrum was most effective at separating fires and clearcut harvests possibly due to differences in structure, shadowing, and amounts of exposed soil left behind by the two disturbance types. Although SWIR data acquired 1 year after disturbance enabled the most accurate discrimination of fires and clearcut harvests, good separation (e.g., kappa ≥ 0.80) could still be achieved with Landsat band 5 and other SWIR-based indices 3 to 4 years after disturbance. Conversely, minimal disturbance responses in near infrared-based indices associated with green leaf area (e.g., NDVI) led to unreliably low classification accuracies regardless of time since disturbance. In addition to exploring the spectral and temporal manifestation of forest disturbance types, we also demonstrate how Landsat change maps which attribute cause of disturbance can be used to help elucidate the social, ecological and carbon consequences associated with wildfire and clearcut harvesting in Canadian boreal forests.  相似文献   

8.

The scientific community dealing with modelling of emissions of greenhouse gases and aerosols from anthropogenic sources demands reliable and quantitative information on the magnitude of biomass burning at a global scale. It is in this context that the Global Burnt Area -- 2000 (GBA2000) initiative has been launched. The specific objectives of this initiative are to produce a map of the areas burnt globally for the year 2000, using the medium resolution (1.1 km) Système Pour l'Observation de la Terre (SPOT) 4-VEGETATION (SPOT-VGT) satellite imagery and to derive statistics of area burnt per country, per month and per main type of vegetation cover. A series of regional algorithms has been developed and incorporated into a data processing system designed to yield monthly estimates of areas burnt at a global scale. The map data will then be transformed into quantitative information and made publicly available over the World Wide Web at a range of spatial and temporal resolutions to satisfy some of the requirements of the atmospheric and climate change modelling community.  相似文献   

9.
Recent studies of vegetation phenology of northern forests using satellite data suggest that the observed earlier spring increase and peak amplitude of the normalized difference vegetation index (NDVI) are a result of climate warming. In addition to undergoing an increase in temperature, the northern forests of Canada have also seen a dramatic increase in area burned by wildfire over the same time period. Using the Canadian Large Fire Database, we analyzed the impact fire had on the phenological dates derived from fitting a logistical model to yearly data from 2004 for several different subsets of both AVHRR-NDVI and MODIS LAI in wildfire dominated terrestrial ecozones. Fire had a significant but complex effect on estimated phenology dates. The most recently burned areas (1994–2003) had later green-up dates in two ecozones for AVHRR data and all ecozones for MODIS. However, older forested (not burned during 1980–2003) had estimated green-up dates 1 to 9 days earlier than the entire forested area in the MODIS LAI data. These data corroborate studies in Canada and demonstrate that fire history is influencing boreal forest phenology and growing season LAI.  相似文献   

10.

The goal of this study was to evaluate the feasibility of sub-pixel burned area detection in the miombo woodlands of northern Mozambique, using imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS). Multitemporal Landsat-7 ETM+ data were acquired to produce a high spatial resolution map of areas burned between mid-August and late September 2000, and a field campaign was conducted in early November 2000 to gather ground truth data. Mapping of burned areas was performed with an ensemble of classification trees and yielded a kappa value of 0.896. This map was subsequently degraded to a spatial resolution of 500 m, to produce an estimate of burned area fraction, at the MODIS pixel size. Correlation analysis between the sub-pixel burned area fraction map and the MODIS reflective channels 1-7 yielded low but statistically significant correlations for all channels. The better correlations were obtained for MODIS channels 2 (0.86 µm), 5 (1.24 µm) and 6 (1.64 µm). A regression tree was constructed to predict sub-pixel burned area fraction as a function of those MODIS channels. The resulting tree has nine terminal nodes and an overall root mean square error of 0.252. The regression tree analysis confirmed that MODIS channels 2, 5, and 6 are the best predictors of burned area fraction. It may be possible to improve these results considering, as an alternative to individual channels, some appropriate spectral indices used to enhance the burnt scar signal, and by including MODIS thermal data in the analysis. It may also be possible to improve the accuracy of sub-pixel burned area fraction using MODIS imagery by allowing the regression tree to automatically create linear combinations of individual channels, and by using ensembles of trees.  相似文献   

11.
鉴于准确估测森林的过火面积对森林火灾的损失评估和过火区植被的恢复所具有的重要作用,选取了2006年~2010年黑龙江省51个重大森林火灾记录,分别利用MODIS的MOD14A2(Terra)火产品数据和TM遥感影像数据估算过火面积,并利用Kappa指数分析过火面积在数量和空间位置上的一致性。结果表明:在单个火场尺度上,小于3.72km2的森林火灾不适于利用MOD14A2产品来估算过火面积,而年过火总面积的相对误差小于15%。MOD14A2火产品可以有效地估测年度尺度上森林的过火面积;数量Kappa指数明显大于位置Kappa指数和标准Kappa指数,位置Kappa指数较低,这可能是由于MODIS数据的空间分辨率较低、林火记录坐标位置不够准确等原因造成的,有待进一步研究。  相似文献   

12.
The rapid environmental changes occurring in the Brazilian Amazon due to widespread deforestation have attracted the attention of the scientific community for several decades. A topic of particular interest involves the assessment of the combined impacts of selective logging and forest fires. Forest disturbances by selective logging and forest fires may vary in scale, from local to global changes, mostly related to the increase of carbon dioxide released into the atmosphere. Selective logging activities and forest fires have been reported by several studies as important agents of land-use and land-cover changes. Previous studies have focused on selective logging, but forest fires on a large scale in tropical regions have yet to be properly addressed. This study involved a more comprehensive investigation of temporal and basin-wide changes of forest disturbances by selective logging and forest fires using remotely sensed data acquired in 1992, 1996, and 1999. Landsat imagery and remote-sensing techniques for detecting burned forests and estimating forest canopy cover were applied. We also conducted rigorous ground measurements and observations to validate remote-sensing techniques and to assess canopy-cover impacts by selective logging and forest fires in three different states in the Brazilian Amazon. The results of this study showed a substantial increase in total forested areas impacted by selective logging and forest fires from approximately 11,800 to 35,600 km2 in 1992 and 1999, respectively. Selective logging was responsible for 60.4% of this forest disturbance in the studied period. Approximately 33% and 7% of forest disturbances detected in the same period were due to impacts of forest fires only and selective logging and forest fires combined, respectively. Most of the degraded forests (~90%) were detected in the states of Mato Grosso and Pará. Our estimates indicated that approximately 5467, 7618, and 17437 km2 were new areas of selective logging and/or forest fires in 1992, 1996, and 1999, respectively. Protected areas seemed to be very effective in constraining these types of forest degradation. Approximately 2.4% and 1.3% of the total detected selectively logged and burned forests, respectively, were geographically located within protected areas. We observed, however, an increasing trend for these anthropogenic activities to occur within the limits of protected areas from 1992 to 1999. Although forest fires impacted the least area of tropical forests in the study region, new areas of burned forests detected in 1996 and 1999 were responsible for the greatest impact on canopy cover, with an estimated canopy loss of 18.8% when compared to undisturbed forests. Selective logging and forest fires combined impacted even more those forest canopies, with an estimated canopy loss of 27.5%. Selectively logged forest only showed the least impact on canopy cover, with an estimated canopy loss of 5%. Finally, we observed that forest canopy cover impacted by selective logging activities can recover faster (up to 3 years) from impact when compared to those forests disturbed by fires (up to 5 years) in the Amazon region.  相似文献   

13.
This study examines the feasibility of using MODIS images (MOD02 products) for the detection and monitoring of forest clear cuts in the boreal forest in north-west Russia. The proposed approach combines three change detection methods, including Change Vector Analysis, Textural Analysis using the coefficient of variation, and Constrained Energy Minimization analysis. For each individual method a series of thresholds was tested in order to obtain an optimal identification of clear cuts. A clear cut detection was only accepted if the change was detected by each individual method. All input parameters needed were derived from a set of reference clear cuts, mapped from 30 m resolution Landsat ETM+ imagery and used also for accuracy assessment. Change assessment was tested with MODIS images of two and of three acquisition dates. Referring to two test sites (Karelia, Komi) the detection omission and commission errors, assessed within a 3 × 3 pixels moving kernel, were at 23% and 8%, and at 21% and 17%, respectively. In terms of detectable clear cut size, a detection accuracy of about 90% can be expected for clear cuts in the size category above 15 ha, which contains the majority of cuts in the region. MODIS therefore provides good capabilities for large scale monitoring of major clear cut activities in the boreal forests of north-western Russia.  相似文献   

14.
Monitoring and management of forest fires is very important in countries like India where 55% of the total forest cover is prone to fires annually. The present study aims at effective monitoring of forest fires over the Indian region using Defense Meteorological Satellite Program-Operational Linescan System (DMSP-OLS) nighttime satellite data and to evaluate the active fire detection capabilities of the sensor. Nightly DMSP-OLS fire products were generated from February to May 2005 (peak fire season) and analyzed to study the occurrence and behavior of fires over different forest physiognomies in Indian region. Fire products generated from DMSP-OLS were validated with ground observations of fire records from state forest departments to evaluate the accuracy of fire products. Further, inter-comparison of the DMSP-OLS derived fire products with contemporary fire products from Moderate resolution Imaging Spectroradiometer (MODIS) (both daytime and nighttime products) in addition to fires and burnt areas derived from Indian Remote sensing Satellite (IRS-P6) Advanced Wide Field Sensor (AWiFS) data has been done to analyze spatial agreement of fire locations given by the above sensors.Results from the DMSP-OLS fire products (derived from February to May 2005) over Indian region showed high forest fires in southern dry deciduous forests during February-March; central Indian dry and mixed deciduous forests during March-April; northeastern tropical forests during February-April and northern pine forests during May. Spatial pattern in fires showed a typical seasonal shift in fire activity from the southern dry deciduous forests to the northern pine forests and temperate forests as the fire season progressed. Statistical evaluation of DMSP-OLS fire products with ground observations showed an over all accuracy of 98%. Comparison of DMSP-OLS derived fires with consecutive MODIS and AWiFS derived fires for individual days indicated that 69% of the fires continued from current day (DMSP-OLS pass around ∼ 7 pm to ∼ 10 pm local time) to the next day (MODIS and AWiFS pass ∼ 10:30 am local time). Comparison of DMSP-OLS derived fires with burnt areas estimated from AWiFS showed that 98% of DMSP-OLS derived fires on the current day fell within the burnt area of AWiFS on subsequent day. Since the worst forest fires are those that extend from the current to the consecutive days, DMSP-OLS derived fires provide a valuable augmentation to the fires derived from other sensors operating in daytime.  相似文献   

15.
MODIS, AVHRR and SPOT VEGETATION satellite images have recently been used to track coarse scale seasonal vegetation dynamics of boreal and temperate forests. However, the understanding of driving factors of reflectance seasonality at forest stand level is still in its infancy, and has only preliminarily been linked to, for example, forest structure or site fertility. We present results from a study on the seasonal reflectance trends of 145 hemiboreal birch stands in Estonia from budburst to initial senescence. A time series comprising 32 high resolution Landsat ETM+, TM and SPOT HRVIR, HRV images from April to September was assembled for analyzing empirical reflectance courses of birch stands. The most noteworthy seasonal reflectance dynamics were observed in the red and NIR channels, changes in the green and SWIR spectral channels were relatively small. The most stable period in stand reflectance in all the spectral channels occurred in midsummer i.e. when stand leaf area index (LAI) reached its highest level and changes in solar angle were the smallest. A twenty-day difference was observed between the reflectance development of birch stands growing on infertile and fertile sites. Next, to provide an explanation for the observed reflectance changes, we simulated the mean seasonal reflectance trajectories of the study stands at 10 day intervals for the same period using a radiative transfer model (FRT). Simulated seasonal reflectance courses for the different site fertility classes followed the general pattern of the measured courses. Simulation results indicated that the main driving factors for reflectance seasonality for all the site fertility classes in the red and green bands were stand LAI and leaf chlorophyll content, in the NIR band stand LAI, and in the SWIR band LAI and general water content. Finally, we discuss current limitations related to applying forest radiative transfer models in investigating the driving factors of seasonal reflectance changes in the boreal zone.  相似文献   

16.
Land cover exerts considerable control over the exchange of energy, water, and carbon dioxide and other greenhouse gases between land surface and the atmosphere. In China, dramatic land-cover changes have occurred along with rapid economic development in the past 30 years. However, research specifically on whether such land-cover changes have any influence on root-zone soil moisture in the region has started only in very recent few years. In this study, the performance of selected land-surface models (Noah 2.7.1, Noah 3.2, Common Land Model (CLM version 2.0), and Mosaic) implemented in National Aeronautics and Space Administration (NASA)’s Land Information System (LIS version 6.1.6) is first tested using quality-controlled soil moisture observations from 108 in situ sites of the China Meteorological Administration. The best-performing model (CLM2.0) is selected to estimate the influence of land-cover changes on root-zone soil moisture, as well as drought occurrence in Yunnan Province in China. Both the 1992–1993 Advanced Very High Resolution Radiometer (AVHRR) and 2007–2010 Moderate Resolution Imaging Spectroradiometer Collection 5 (MODIS) land-cover products at 1 km resolution are employed to represent 1990 and 2010 land-cover status, respectively. These are verified using the local ground records of Yunnan Province over the two time periods. Their differences are considered roughly as land-cover changes occurring during the period 1990–2010. It is found that land-cover changes from primeval forest to grassland may increase root-zone soil moisture, thus reducing drought, while changes from grassland and primeval forest to cropland or reforested areas have increased the likelihood of drought.  相似文献   

17.
The monitoring of annual burned forest area is commonly used to evaluate forest fire carbon release and forest recovery and can provide information on the evolution of carbon sources and sinks. In this work, a new method for mapping annual burned area using four types of change metrics constructed from Moderate Resolution Imaging Spectroradiometer (MODIS) data for Manitoba, Canada, was developed for the 2003–2007 period. The proposed method included the following steps: (1) four types of change metrics constructed from MODIS composite data; (2) Stochastic Gradient Boosting algorithm; and (3) two thresholds to ascertain the final burned area map. Fire-event records from the Canadian National Fire Database (CNFDB) for Manitoba were used to train and validate the proposed algorithm. The predicted burned area was within 91.8% of the CNFDB results for all of the study years. The results indicate that the presented metrics could retain spectral information necessary to discriminate between burned and unburned forests while reducing the effects of clouds and other noise typically present in single-date imagery. A visual comparison to Thematic Mapper (TM) images further revealed that in some areas the mapping provided improvement to the CNFDB data set.  相似文献   

18.
植被水分指数NDWI是基于短波红外(SWIR)与近红外(NIR)的归一化比值指数。与NDVI相比,它能有效地提取植被冠层的水分含量;在植被冠层受水分胁迫时,NDWI指数能及时地响应,这对于旱情监测具有重要意义。结合2003年夏季MODIS影像数据和地面气象数据,以江西省内一片农田和一片林地为试验区域,分析比较了NDWI与NDVI距平值在短期旱情监测中的有效性。监测结果表明, NDWI对植被冠层水分信息比NDVI更为敏感;在短期干旱监测中,NDWI指数能准确地反映旱情的时空变化。  相似文献   

19.
Abstract

The short wavelength infrared region (0·7-3·0μm) has manifold applications in the detection and monitoring of geoenvironmental features, such as coal mine fire, oil well fire, active volcanoes, industrial hot spots, etc. These features are essentially characterized by high temperatures and often release aerosols and greenhouse gases into the atmosphere. In the present article, an attempt has been made to study the applications of Thematic Mapper (TM) Short Wavelength Infrared (SWIR) bands (4, 5 and 7) data for the detection and monitoring of these high temperature related geoenvironmental features. The rationale of using the SWIR data for temperature related studies is also discussed in brief. The pixel-integrated and sub-pixel temperatures have been calculated using the TM SWIR bands data for an active volcano (Barren Island volcano), coal mine fire (Jharia Coal Field) and industrial hot spots (Bokaro Steel Plant).  相似文献   

20.
This study explores the use of the relationship between the normalized difference vegetation index (NDVI) and the shortwave infrared ratio (SWIR32) vegetation indices (VI) to retrieve fractional cover over the structurally complex natural vegetation of the Cerrado of Brazil using a time series of imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS). Data from the EO-1 Hyperion sensor with 30 m pixel resolution is used to sample geographic and seasonal variation in NDVI, SWIR32, and the hyperspectral cellulose absorption index (CAI), and to derive end-member values for photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), and bare soil (BS) from a suite of protected and/or natural vegetation sites across the Cerrado. The end-members derived from relatively pure 30 m pixels are then applied to a 500 m pixel resolution MODIS time series using linear spectral unmixing to retrieve PV, NPV, and BS fractional cover (FPV, FNPV, and FBS). The two-way interaction response of MODIS-equivalent NDVI and SWIR32 was examined for regions of interest (ROI) collected within protected areas and nearby converted lands. The MODIS NDVI, SWIR32 and retrieved FPV, FNPV, and FBS are then compared to detailed cover and structural composition data from field sites, and the influence of the structural and compositional variation on the VIs and cover fractions is explored. The hyperion ROI analysis indicated that the two-way NDVI–SWIR32 response behaved as an effective surrogate for the two-way NDVI–CAI response for the campo limpo/grazed pasture to cerrado sensu stricto woody gradient. The SWIR32 sensitivity to the NPV and BS variation increased as the dry season progressed, but Cerrado savannah exhibited limited dynamic range in the NDVI–CAI and NDVI–SWIR32 two-way responses compared to the entire landscape, which also comprises fallow croplands and forests. Validation analysis of MODIS retrievals with Quickbird-2 images produced an RMSE value of 0.13 for FPV. However, the RMSE values of 0.16 and 0.18 for FBS and FNPV, respectively, were large relative to the seasonal and inter-annual variation. Analysis of site composition and structural data in relation to the MODIS-derived NDVI, SWIR32 and FPV, FNPV, and FBS, indicated that the VI signal and derived cover fractions were influenced by a complex mix of structure and cover but included a strong year-to-year seasonal effect. Therefore, although the MODIS NDVI–SWIR32 response could be used to retrieve cover fractions across all Cerrado land covers including bare cropland, pastures and forests, sensitivity may be limited within the natural Cerrado due to sub-pixel heterogeneity and limited BS and NPV sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号