首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater is an important part of the precious water resources. As the fresh surface water resources become scarcer because of climate change, population growth, and industrial activities, more and more groundwater has been extracted to meet the demands of various water uses (e.g. municipal, industrial, and agricultural). Excessive groundwater extraction leads to severe ground subsidence which compromises the safety of surface and underground infrastructures. Modelling the effects of groundwater extraction is vital to the management and sustainable use of groundwater. However, results of such modelling have to be validated with inputs such as the field survey of ground subsidence. Levelling and continuous global positioning system (GPS) receiver networks are routinely used to collect these field measurements. Unfortunately, these techniques have limitations in terms of areal coverage and density of survey marks and, as a result, subsidence hot spots can be easily missed out. In order to provide a comprehensive picture of subsidence to aid geotechnical modelling and to assess the effectiveness of measures used to mitigate ground subsidence, satellite imaging radar interferometry techniques (interferometric synthetic aperture radar (InSAR) can be used to complement other deformation monitoring techniques. In this study, 20 Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) images acquired from 31 December 2006 to 26 February 2011 were used to map the land displacement over the Choushui River Fluvial Plain (CRFP), Taiwan. The GPS measurements acquired at 10 continuously operating reference stations (CORS) were used to refine the orbit error in the each differential interferogram obtained from each radar image pair. The displacement time series over the distributed scatterers and the persistent scatterers were analysed. Several subsidence bowls were identified in CRFP. A quantitative comparison was conducted to compare the radar measurements to the GPS measurements over 36 GPS CORS stations. Good agreement between both measurements was observed with coefficient of determination (R2) of 0.97, absolute mean difference of 3.2 mm year?1, and standard deviation of 4 mm year?1. The InSAR-measured Line-of-Sight displacement and GPS-measured horizontal displacement were integrated to derive the vertical displacement map. Two displacement maps were generated using two ALOS-2 PALSAR-2 pairs acquired between 2015 and 2016. Similar subsidence patterns were found in the two maps compared to the 2006–2011 displacement rate map, suggesting the land over the same region might have continued to fall.  相似文献   

2.
ABSTRACT

This study employs interferometric synthetic aperture radar (InSAR) data sets to monitor the surface deformation of the Nasr Abad buried salt diapir in the Central Basin of Iran. The Nasr Abad salt diapir is one of the largest buried salt diapirs in Iran and could be ideal site for oil/gas storage and industrial waste disposal. In this study, we use 40 advanced synthetic aperture radar (ASAR) images from Environmental Satellite (EnviSat) to analyse surface displacement rates of Nasr Abad diapir and its surrounding regions. A time series of line-of-sight (LOS) displacements on the residual cap above the buried diapir were obtained from both descending and ascending images between 2003 and 2010 by applying the Small-BAseline Subset (SBAS) technique. Tropospheric artefacts in the displacement interferograms were mitigated using the power-law correction method in Toolbox for Reducing Atmospheric InSAR Noise (TRAIN) software. Finally, the data for temperature, precipitation, and tidal forces were correlated with the time-series displacement results of four points that located on the residual cap. Our results indicate that surface above the diapir and an area of about 2 km2 subsided with maximum LOS velocity of about 7 mm year?1 for ascending images and 5 mm year?1 for descending images. The amount of vertical subsidence derived from LOS decomposition in reactive stage of Nasr Abad salt body is about 7 mm year?1. Comparing the temperature and precipitation data with the time series of displacement confirmed that the salt expands when temperatures increases and that salt flow accelerates when it is wet. The displacement pattern retrieved from InSAR analysis is in good agreement with intervals near maximum and minimum solid earth tides. Monitoring the activities of the Nasr Abad region over 7 years shows that the region of surface subsidence is confined to the area along the Khurabad and AbShirin-Shurab Fault zones in the southern Central Basin.  相似文献   

3.
Radarsat and JERS-1 imagery were used for mapping zonation of vegetation communities in the Amazon floodplain. Imagery analysis indicates that at periods of minimum water level the backscattering values of both C and L bands are the lowest and as the water level rises, so do the backscattering values. JERS-1 imagery exhibits a larger dynamic range of backscattering in response to the ground cover for the two extremes of water level (10?dB) compared to Radarsat imagery. The backscattering differences from different ground cover allowed the use of a region-based classification that produced seasonal maps with accuracies higher than 95% for vegetated areas of the floodplain. These seasonal maps were used to estimate the spatial distribution and time of inundation and the vegetation cover of the floodplain. It was possible to determine that semi-aquatic vegetation, tree-like aquatic plants, and shrub-like trees colonize regions flooded for at least 300?days?year?1. Secondary colonizers, such as tall well-developed floodplain forest, cover regions flooded for approximately 150?days?year?1, and floodplain climax forest colonize regions inundated for approximately 60?days?year?1.  相似文献   

4.
Geologically, La Paz City is located in an unstable area. During the history of La Paz city, many landslides have destroyed houses and valuable infrastructures. In the last decades, time series Interferometric Synthetic Aperture Radar (InSAR) technologies have demonstrated a great capacity for detecting slow ground displacement, achieving an accuracy of millimetre-level. In order to have a better landslide monitoring of La Paz city, in this study, the Sentinel-1 SAR images have been processed by Persistent Scatterer Interferometry (PSI) and the Small Baseline Subset (SBAS) techniques. The time span of the datasets is from March 2015 to August 2016. Both ascending and descending Synthetic Aperture Radar (SAR) images have been processed to obtain the line of sight (LOS) ground velocity, and then the results have been combined to estimate the up-down and east-west displacement. Several active movement areas have been identified, showing a surface velocity up to 158 mm year?1 westward and 49 mm year?1 eastward. Furthermore, two important findings have been discovered. First, the InSAR result has detected movement in Auquisamaa hill before the area collapsed (15 February 2017), where five houses are buried. Second, the InSAR result has identified that there are still some unstable sites in Callapa area, where a mega-landslide has destroyed more than a thousand of houses in February 2011. In conclusion, we have verified that the InSAR technology could be a very useful tool to help La Paz public institutions for a better management of urban planning, landslide areas delimitation and landslide risk mitigation.  相似文献   

5.
The spatiotemporal variability of subsidence around the East Mesa Geothermal Field (EMGF) near the All American Canal (AAC) has been measured using 30 temporally averaged interferograms from 1992 to 2000. Deformation rate maps from two shorter time periods indicated the maximum subsidence rate of the EMGF was reduced from??43 mm year?1 (1992–1997) to??34 mm year?1 (1996–2000) corresponding to decreasing net geothermal water production. The maximum subsidence on the East Highline Canal was??9.5 ± 0.5 and??2.4 ± 0.8 cm for each shorter time period. Interferometric synthetic aperture radar (InSAR) stacking demonstrated its utility in monitoring subsidence of the canal caused by the nearby geothermal plant at regional coverage superior to ground levelling networks. Such data on the subsidence of surface and subsurface hydrodynamics along the US–Mexico border are scarce, and are particularly significant in a zone of present and likely future acute water resource management sensitivity.  相似文献   

6.
Multi-mission altimeter measurements from TOPEX, Jason-1, and Jason-2 satellite altimetry over the 1993–2009 time span are used to characterize the local linear sea level trend (LSLT) around Taiwan. The results show that the long-term changes of default geophysical and range corrections, i.e. the inverted barometer correction, wet tropospheric correction, and sea state bias correction, have significant impacts on the determination of local LSLT. The trend of default corrections contribute more than 1.4 mm year?1 along the coastline of China mainland and 2.1 mm year?1 to local LSLT in the Taiwan Strait. The default-corrected altimetric data exhibit highest and lowest local LSLTs in the southeast and northwest of Taiwan, respectively. The regional LSLTs of 3.8 mm year?1 and 4.6 mm year?1 are estimated from the default-corrected and uncorrected altimetric data in the study area, respectively.  相似文献   

7.
This research compares two time-series interferometric synthetic aperture radar (InSAR) methods, namely persistent scatterer SAR interferometry (PS-InSAR) and small baseline subset (SBAS) to retrieve the deformation signal from pixels with different scattering characteristics. These approaches are used to estimate the surface deformation in the L’Aquila region in Central Italy where an earthquake of magnitude Mw 6.3 occurred on 6 April 2009. Fourteen Environmental Satellite (ENVISAT) C-band Advanced Synthetic Aperture Radar (ASAR) images, covering the pre-seismic, co-seismic, and post-seismic period, are used for the study. Both the approaches effectively extract measurement pixels and show a similar deformation pattern in which the north-west and south-east regions with respect to the earthquake epicentre show movement in opposite directions. The analysis has revealed that the PS-InSAR method extracted more number of measurement points (21,103 pixels) as compared to the SBAS method (4886 pixels). A comparison of velocity estimates shows that out of 833 common pixels in both the methods, about 62% (517 pixels) have the mean velocity difference below 3 mm year?1 and nearly 66% pixels have difference below 5 mm year?1. It is concluded that StaMPS-based PS-InSAR method performs better in terms of extracting more number of measurement pixels and in the estimation of mean line of sight (LOS) velocity as compared to SBAS method.  相似文献   

8.
This study integrates time-variable Gravity Recovery and Climate Experiment (GRACE) gravimetric measurements and Global Land Data Assimilation System (GLDAS) land surface models (LSM) in order to understand the inter-annual variations and groundwater storage changes (GWSC) in the Nzoia River Basin in Kenya, using the water balance equation and parameters. From averaged GRACE and GWSC data, the results showed that over the 10-year period, the basin experienced a groundwater depth gain of 6.38 mm year?1, which is equivalent to aquifer recharge of 298 million cubic metres (mcm) year?1. The deseasonalized groundwater variation analysis gave a net gain in groundwater storage of 6.21 mm year?1 that is equal to a groundwater recharge gain of 290 mcm year?1. The observed results are comparable to the groundwater safe yield of 330 mcm year?1 as estimated by the Water Resource Management Authority in Kenya. Through cross-plotting and analysis with averaged satellite altimetry data and in situ measurements from rainfall and streamflow discharge, the total water storage change (TWSC) and GWSC in the basin were consistent and closely correlated in variation trends. The inter-annual standard deviation of groundwater change was determined as ±0.24 mm year?1, which is equivalent to 85% degree of confidence in the obtained results. The results in this study show that GRACE gravity-variable solutions and GLDAS-LSM provide reliable data sets suitable for the study of small to large basin groundwater storage variations, especially in areas with scarce and sparsely available in situ data.  相似文献   

9.
To investigate the long-term trends and effects of decadal solar variability in the upper tropospheric ozone, data obtained from the Stratospheric Aerosol and Gas Experiment II (SAGE II) aboard the Earth Radiation Budget Satellite (ERBS) during the period 1985–2005 were analysed using a multifunctional regression model over the Indian region (8–40° N; 65–100° E). Analysis of time series spanning these years shows statistically insignificant trends (at the two-sigma level (95% confidence level)) at upper tropospheric pressure levels (10?16 km). This period covers two solar cycles, one lasting from 1985 to 1995 and the other from 1996 to 2005; these are referred to as decade I and decade II, respectively. Since temporal variation in ozone number density indicates 11 year periodicity, trends are statistically significant when calculated separately during each solar cycle. Trend analysis indicates statistically significant positive trends (0.7 ± 1.7% to 3.9 ± 2.9% year?1 during decade I, and 2.2 ± 1.6% to 4.5 ± 3.0% year?1 during decade II). In general, higher ozone trends are observed during decade II. Seasonal variation in trends during decade II shows increasing trends during the pre-monsoon (0.8?3.8% year?1), monsoon (0.8?7.1% year?1), and post-monsoon (2.8?8.0% year?1) seasons. The annually averaged solar signal in ozone is found to be of the order of around??5 ± 4.3% to??13.8 ± 6.7%/(100 sfu). Results obtained in the present study are also compared with those obtained by other researchers.  相似文献   

10.
ABSTRACT

Land subsidence associated with groundwater extraction in the city of Beijing, China, has been a problem for decades. Remote sensing has been used extensively in prior studies to monitor subsidence in Beijing. However, given recent changes in precipitation and groundwater management, there is an urgent need to update the subsidence record and to evaluate whether the long-term spatiotemporal patterns of subsidence have changed. This study therefore investigates the recent spatiotemporal patterns of land subsidence in Beijing by tomography-based persistent scatterer interferometry SAR (Tomo-PSInSAR) technology, using 39 RadarSAT-2 images from 2012 to 2015 and 33 Sentinel-1 images from 2016 to May-2018, and drawing upon Geographic Information System (GIS) spatial analysis methods. Vertical ground deformation rates in Beijing were found to range from ?176.2 to +12.3 mm year?1 from 2012 to 2015, but subsequently decreased to ?119 to +8 mm year?1 from 2016 to May 2018. Three spatial scale of subsidences are evident: At the metropolitan regional-scale, the total area of subsidence area is about 1235.2 km2, and comprises four main subsiding regions, located in the northern and eastern parts of the city. More than 85% of the subsiding area is located between the Fifth and Sixth Ring Roads. At a more local scale, eight main subsidence bowls are characterized by different patterns of subsidence. Some of the subsidence bowls are separated by active faults. Time-series data of the displacement show that the decreasing subsidence rate after 2016 could be due to the 1 m rise in mean groundwater level from the end of 2014 to mid-2018. This change in groundwater level is likely due to an increase in precipitation since 2016, and water transfers, which reached 2.3 × 109 m3 by 2017 from the South-North Water Transfer Project. At the scale of individual infrastructure projects, the Beijing subway, main roads and the Capital Airport all show severe uneven subsidence, which is a cause for concern. To our knowledge, this research is the first study using satellite SAR remote sensing methods to document the change in the land subsidence rate of Beijing. Starting in 2016, the rate notably declined, suggesting that subsidence mitigation strategies are beginning to have an effect.  相似文献   

11.
In this paper three methods are presented that retrieve the atmospheric water vapour from DAIS (digital airborne imaging spectrometer) data in the framework of the DAISEX (DAIS Experiment) campaigns carried out by ESA (European Space Agency). The three methodologies analysed in the paper are: (i) the ratio technique, in which the water vapour is obtained from visible and near‐infrared bands; (ii) the split‐window technique; and (iii) the split‐window covariance‐variance ratio technique, in which the water vapour content is retrieved from thermal infrared bands. A comparison between the atmospheric water vapour content extracted from the DAIS images using these techniques and that obtained from in situ radiosoundings shows a root mean square deviation of around 0.1?g?cm?2 for the first two methods and 0.4?g?cm?2 for the last one. Finally, as an application, the atmospheric water vapour retrieved was used to perform the atmospheric correction for DAIS thermal bands and retrieve land surface temperatures, obtaining in this way root mean square deviations less than 2?K for the least absorbent bands.  相似文献   

12.
Glacier mass variations have a direct impact on some of the key components of the global water cycle, including sea level rise and freshwater availability. Apart from being one of the largest Himalayan glaciers, Gangotri is one of the sources of water for the Ganges river, which has a considerable influence on the socioeconomic structure of a largely over-populated catchment area accounting for ~26% of India’s landmass. In this study, we present the most recent assessment of the Gangotri glacier dynamics, combining the use of interferometric techniques on synthetic aperture radar data and sub-pixel offset tracking on Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery. Results show that on average, the Gangotri glacier snout has receded at a rate of 21.3 ± 3 m year?1 over a period of 6 years (2004–2010). While glacier surface velocity near the snout is estimated to be between 24.8 ± 2.3 and 28.9 ± 2.3 m year?1, interior portions of the glacier recorded velocities in the range of 13.9 ± 2.3 to 70.2 ± 2.3 m year?1. Further, the average glacier surface velocity in the northern (lower) portions (28.1 ± 2.3 m year?1) is observed to be significantly lower than in the southern (higher) portions (48.1 ± 2.3 m year?1) of the Gangotri glacier. These values are calculated with an uncertainty of less than 5 m year?1. Results also highlight a consistent retreat and non-uniform dynamics of the Gangotri glacier.  相似文献   

13.
A joint approach using satellite techniques was applied to two different regions (Sellas and Chalkeio villages) of Peloponissos (Greece) in order to detect and monitor slope instability. In the context of the research effort, a GPS campaign network, along with one permanent GPS station and a corner reflector (CR) network, was established at each region. From the two GPS campaigns that were carried out, ground displacements in the north and east components for Sellas region reached a magnitude of 9 and 8 mm, respectively, whereas for Chalkeio they were of the order of 1 cm and 8 mm, respectively. These results, however, are still preliminary and need validation from additional GPS campaigns that are planned to be carried out in future. The temporal resolution provided by the position time series of the permanent GPS stations highlighted the main features of both instability phenomena, that is, sensitivity at both horizontal components of motion for the Sellas region and slow linear trends for the Chalkeio region. The achieved precision of the daily solutions for both permanent GPS stations was found to be 1–3 mm for the horizontal components and 5–8 mm for the vertical components. Regarding the preliminary study of differential synthetic aperture radar (SAR) interferometry (DInSAR) in CR network, each reflector has been identified in SAR imagery, but at present the volume of SAR acquisitions is not adequate for providing safe deformation and error estimations. On the other hand, the permanent scatterers interferometry and small baselines subset (SBAS) techniques revealed a discontinuity in retrospective deformation rate along the observed rupture of Chalkeio village of almost 6 mm year?1.  相似文献   

14.
This study aims to evaluate the potential of TerraSAR-X (TSX) add-on for Digital Elevation Measurement (TanDEM-X) bi-static synthetic aperture radar (SAR) data sets for the retrieval of glacier digital elevation models (DEMs) and elevation changes over mountain regions. We exploited two pairs of TanDEM-X SAR data sets acquired in 2012 and 2016 over the Puruogangri Ice Field (PIF), which is the largest modern glacier on the Tibetan Plateau (TP). Two fine-detail and high-precision DEMs for 2012 and 2016 over the PIF were generated by differential interferometric processing, and were validated against height measurements from global positioning system (GPS) and Ice, Cloud, and land Elevation Satellite (ICESat) altimetry, yielding a vertical accuracy of 1.91 ± 0.76 m and 1.69 ± 0.83 m, respectively. The elevation changes were derived by differencing the bi-temporal TanDEM-X DEMs and revealed predominant glacier surface thinning on the PIF. An annual surface thinning rate of ?0.317 ± 0.027 m year?1 was estimated in the period 2012–2016, which is much larger than the estimate of ?0.049 ± 0.200 m year?1 for the period 2000–2012 reported in previous studies. This accelerating trend of glacier surface thinning might be attributable to the continued increase in summer temperature since the 1980s and decrease in annual precipitation between two periods of investigation. This study demonstrates that comparison of the bi-temporal TanDEM-X DEMs is an efficient method for accurate and detailed retrieval of the latest surface elevation changes of mountain glaciers.  相似文献   

15.
PROBA-V (Project for On-Board Autonomy – Vegetation) is an ESA (European Space Agency) mission developed within the framework of the Agency’s General Support Technology Programme (GSTP) devoted to the observation of the Earth’s vegetation, providing data continuity with the SPOT (Satellite pour l’Observation de la Terre) 4 and 5 VEGETATION payloads as a gap-filler to the ESA Sentinel-3 mission. The PROBA-V space segment is based on a three-axis stabilized PROBA small-satellite platform of about 140 kg equipped with a state-of-the-art compact 4-band multi-spectral imager with a large field of view. The instrument’s optomechanics is based on three very compact TMA (three mirror anastigmat) telescopes placed on an optical bench. At an altitude of 820 km, the instrument is able to provide daily coverage of the Earth in three VNIR (visible and near-infrared) bands and one SWIR (short-wave infrared) spectral band, with a spatial resolution of up to 100 m × 100 m at nadir for the VNIR. The instrument raw data will be downlinked with an X-band transmitter to the ground reception station in Kiruna, Sweden. The mission control centre is located in Redu, Belgium. The image processing centre, the so-called ‘user segment’, automatically accesses the raw data and is responsible for the processing and the dissemination of the data products towards the user community. The PROBA-V spacecraft was launched on board the new European launcher Vega on 7 May 2013. It is designed for a nominal mission lifetime of 2.5 years with a possible extension to 5 years.  相似文献   

16.
With the exploitation of coal resources, ground surface subsidence continues to occur in mining areas, destroying the ecological environment and significantly affecting the daily productivity and life of humans. The differential synthetic aperture radar interferometry (D-InSAR) technique is widely used to monitor ground surface deformation because of its unique advantages such as high accuracy and wide coverage. However, conventional D-InSAR technology provides only one-dimensional (1D) displacement monitoring along the radar line of sight (LOS). This article proposes a method based on an analysis of the mining subsidence law for true three-dimensional (3D) displacement monitoring by combining D-InSAR and a subsidence prediction model based on the probability integral method. In this approach, 1D displacement, obtained using D-InSAR, is then combined with the prediction model to obtain the 3D displacement of ground surface target points. Here, 3D displacement curves were obtained for the Fengfeng mining area (China) using RadarSat-2 images obtained on 9 January and 2 February 2011. True ground surface displacement was measured simultaneously by levelling when the 152under31 s working face was being exploited in Jiulong mine. Vertical displacement and inclined deformation calculated using the proposed method were compared with levelling survey data and the results showed average differences of 3.2 mm and 0.1 mm m?1, respectively; the calculated maximum displacement in the east–west and south–north directions were 106 and 73 mm, respectively. The spatial distribution of the displacements was in accordance with the mining subsidence law. Thus, the new method can retrieve highly accurate 3D displacements caused by mining subsidence.  相似文献   

17.
We apply the Permanent Scatterers Synthetic Aperture Radar Interferometry (PS-InSAR) technique to the Campania Region (Southern Italy), which includes the Southern Apennines chain and Plio-Quaternary structural depressions, with the aim to detect ground displacements at a regional scale. The study area, which extends for 13,600 km2, is characterized by intense urbanization, active volcanoes (Phlegraean Fields, Vesuvius and Ischia), seismogenic structures, landslides, hydrogeological instability. PS-InSAR technique allows us to identify a set of radar benchmarks (PS) where accurate displacement measurements can be carried out. About 1.7·106 PS are identified by processing Synthetic Aperture Radar (SAR) images acquired in ascending and descending orbits from 1992 to 2001 by the European Remote Sensing satellites (ERS). The PS-InSAR application at regional scale detected ground deformations ranging from + 28 to − 39 mm/yr. The calculated velocity values are consistent with the available GPS and levelling data from selected areas. We identify volcanic areas in which the deformation is mainly related to the depressurization of the local hydrothermal systems, and recognize deformations along seismogenic and aseismic NNW-SSE and NW-SE faults. The deformations localized along the Southern Apennines chain are mainly related to landslides while those occurring in the plains are due to subsidence processes induced by intensive drainage from wells, i.e. anthropic activity. The review of 9 years of SAR data shows that tectonic, volcanic/hydrothermal, gravity, and anthropic processes are responsible for the ground deformation of Campania. The proposed joint interpretation of deformation fields related to natural and anthopogenic factors provides a comprehensive view of the dynamics of the Earth’s surface.  相似文献   

18.
The Sundarbans is the world's largest remaining single block of mangrove forest, covering approximately 1 million ha (~ 10,000 km2) of the Ganges-Brahmaputra delta along the coastal areas of India and Bangladesh. Sea level rise and alteration of water flows of the Himalayan headwaters are among the major disturbances threatening these coastal areas. But very few studies exist on the dynamics or current status of the Sundarbans coastline. We used Landsat images spanning from 1973 to 2010, and an algorithm that we developed, to consistently estimate the spatiotemporal dynamics of erosion and accretion for four different time intervals and the whole study period. Our results show that the direction and extent of erosion and accretion rates varied throughout the different periods. Erosion was the highest in the 1973-1979 interval, with 23.2 km2 year−1 of land loss. However, that rate substantially declined in the following periods, reaching a rate of 7-10 km2 year−1. Accretion showed a rate of 10 km2 year−1 between 1973 and 1989, but substantially declined to ~ 4 km2 year−1 between 1989 and 2010. Accretion rate has declined in the recent years but erosion rate has remained relatively high. As a result the delta front has undergone a net erosion of ~ 170 km2 of coastal land in the 37 years of our study period. These numbers are significantly higher than the previously reported rates and magnitudes of erosion in this area. The methods and maps developed in this study may be helpful in management planning of this vulnerable coastline.  相似文献   

19.
ABSTRACT

River deltas are very complex environments vulnerable to flooding. Most of the world’s deltas are facing the immediate threat of land subsidence that jeopardizes the safety of millions of people worldwide. In Italy, the Po River Delta (PRD) (Northeast Italy) is an area historically affected by high rate of subsidence due to natural and anthropic factors. Even if the subsidence rates remarkably reduced during the last three decades, this process continues to be alarming in particular in low-lying sectors and along the coastline, where the loss of elevation, combined with the sea-level rise, increases the risk related to flooding. In this study, we monitored the subsidence affecting the entire PRD area with advanced differential interferometric synthetic aperture radar (A-DInSAR) techniques applied to three C-band SAR data sets acquired by the European Remote Sensing satellites, Environmental Satellite, and Sentinel-1A satellite in the last 25 years (from 1992 to 2017). The results of the interferometric processing, consisting of both mean velocity and displacement time series along the satellite line of sight, validated by comparison with levelling and global positioning system measurements, show increasing subsidence moving from the inland to the coastline, with maximum deformation velocities, for the most recent data, in the order of ?30 mm year?1. In particular, many embankments near the coastal area are affected by high values of subsidence, which increase the flooding hazard of the entire deltaic territory. This work shows the importance of adopting A-DInSAR techniques to update the knowledge of the extent and rates of deformation of subsiding areas in low-lying territories such as river deltas. The outputs of such monitoring can be of primary importance for the future protection of the territory and the flooding risk mitigation.  相似文献   

20.
ABSTRACT

The Tianshan Mountains region in Central Asia is covered with a large mass of glaciers and seasonal snow cover. This region supplies the main freshwater resources for Central Asia but has been severely affected by climate change over the past decades. In this study, we use the Gravity Recovery and Climate Experiment (GRACE) and Global Land Data Assimilation System (GLDAS) datasets to analyze the spatiotemporal variability of the terrestrial water storage (TWS) in the Tianshan Mountains from 2003 to 2015. The analysis shows that the TWS in the Tianshan Mountains has declined during the past decade. Seasonal changes in the water storage are caused by seasonal differences in the combined precipitation and temperature conditions. The results of TWS variations (TWSVs) in the Tianshan Mountains in 2003–2015 indicated that there is a declining rate of the TWS of the TWS-Mascon, TWS-Gaussian, and TWS-Noah is ?0.72, ?0.48, and ?0.41 cm year?1, respectively. This suggests that the water storage loss in Tianshan Mountains has been about ?4.32 × 109, ?2.88 × 109, and ?2.46 × 109 m3 year?1 during 2003–2015, respectively. Glaciers and seasonal snow cover shrinkage obviously are the main factors governing the spatial difference in the TWSV. Annual mean temperature stays in a high state from the mid-1990s has been a predominant factor affecting the TWSV in the mountains during the past decade. A significant temperature increase in the middle region (Chinese part) accelerated the glacier and snow-cover shrinkage, which resulted in TWS loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号