首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Applied Soft Computing》2008,8(1):392-401
A multi-stage design approach that uses a multiobjective genetic algorithm as the framework for optimization and multiobjective preference articulation, and an H_infty loop-shaping technique are used to design controllers for a gas turbine engine. A non-linear model is used to assess performance of the controller. Because the computational load of applying multiobjective genetic algorithm to this control strategy is very high, a neural network and response surface models are used in order to speed up the design process within the framework of a multiobjective genetic algorithm. The final designs are checked using the original non-linear model.  相似文献   

2.
Vibrational piezoelectric energy harvesters are devices which convert ambient vibrational energy into electric energy. Here we focus on the common cantilever type in which an elastic beam is sandwiched between two piezoelectric plates. In order to maximize the electric power for a given sinusoidal vibrational excitation, we perform topology optimization of the elastic beam and tip mass by means of the SIMP approach, leaving the piezoelectric plates solid. We are interested in the first and especially second resonance mode. Homogenizing the piezoelectric strain distribution is a common indirect approach increasing the electric performance. The large design space of the topology optimization approach and the linear physical model also allows the maximization of electric performance by maximizing peak bending, resulting in practically infeasible designs. To avoid such problems, we formulate dynamic piezoelectric stress constraints. The obtained result is based on a mechanism which differs significantly from the common designs reported in literature.  相似文献   

3.
PID controller structure is regarded as a standard in the control-engineering community and is supported by a vast range of automation hardware. Therefore, PID controllers are widely used in industrial practice. However, the problem of tuning the controller parameters has to be tackled by the control engineer and this is often not dealt with in an optimal way, resulting in poor control performance and even compromised safety. The paper proposes a framework, which involves using an interval model for describing the uncertain or variable dynamics of the process. The framework employs a particle swarm optimization algorithm for obtaining the best performing PID controller with regard to several possible criteria, but at the same time taking into account the complementary sensitivity function constraints, which ensure robustness within the bounds of the uncertain parameters’ intervals. Hence, the presented approach enables a simple, computationally tractable and efficient constrained optimization solution for tuning the parameters of the controller, while considering the eventual gain, pole, zero and time-delay uncertainties defined using an interval model of the controlled process. The results provide good control performance while assuring stability within the prescribed uncertainty constraints. Furthermore, the controller performance is adequate only if the relative system perturbations are considered, as proposed in the paper. The proposed approach has been tested on various examples. The results suggest that it is a useful framework for obtaining adequate controller parameters, which ensure robust stability and favorable control performance of the closed-loop, even when considerable process uncertainties are expected.  相似文献   

4.
用区间变量描述控制系统参数的不确定性,提出了不确定时滞系统鲁棒H_∞控制的鲁棒可靠性方法,基于鲁棒可靠性的不确定时滞系统最优状态反馈H_∞控制器设计方法,将系统的最优控制器设计归结为基于线性矩阵不等式(LMI)的优化问题.所设计的控制器可以在满足对所有不确定性鲁棒可靠的前提条件下,具有最优的H_∞鲁棒性能,并能在控制系统的设计中综合考虑控制性能、控制代价和鲁棒可靠性.数值算例说明了所提方法的有效性和可行性.  相似文献   

5.
This paper develops an innovative optimization method, real structured genetic algorithm (RSGA), which combines the advantages of traditional real genetic algorithm (RGA) with structured genetic algorithm (SGA), and applies it for digital filter and control design optimization problems. For infinite impulse response (IIR) filter designs, the proposed approach fulfills all types of filters by minimizing the order of the filter and the absolute error of both passband and stopband. Both system structure and parametric variables are simultaneously optimized via the proposed chromosome scheme. The approach has also been extended to deal with robust control design problems. The approach offers an effective method for designing an optimal controller with robust stability. Simulation and experimental results conveys the excellence of the proposed algorithm over traditional approaches in convergence speed, performance, cost effectiveness, and attains simpler structure.  相似文献   

6.
A new linear adaptive controller: design, analysis and performance   总被引:2,自引:0,他引:2  
The certainty equivalence and polynomial approach, widely used for designing adaptive controllers, leads to “simple” adaptive control designs that guarantee stability, asymptotic error convergence, and robustness, but not necessarily good transient performance. Backstepping and tuning functions techniques, on the other hand, are used to design adaptive controllers that guarantee stability and good transient performance at the expense of a highly nonlinear controller. In this paper, we use elements from both design approaches to develop a new certainty equivalence based adaptive controller by combining backstepping based control law with a normalized adaptive law. The new adaptive controller guarantees stability and performance, as well as parametric robustness for the nonadaptive controller, that are comparable with the tuning functions scheme, without the use of higher order nonlinearities  相似文献   

7.
This paper explores a framework for topology optimization of multi-component sheet metal structures, such as those often used in the automotive industry. The primary reason for having multiple components in a structure is to reduce the manufacturing cost, which can become prohibitively expensive otherwise. Having a multi-component structure necessitates re-joining, which often comes at sacrifices in the assembly cost, weight and structural performance. The problem of designing a multi-component structure is thus posed in a multi-objective framework. Approaches to solve the problem may be classified into single and two stage approaches. Two-stage approaches start by focusing solely on structural performance in order to obtain optimal monolithic (single piece) designs, and then the decomposition into multiple components is considered without changing the base topology (identical to the monolithic design). Single-stage approaches simultaneously attempt to optimize both the base topology and its decomposition. Decomposition is an inherently discrete problem, and as such, non-gradient methods are needed for single-stage and second stage of two-stage approaches. This paper adopts an implicit formulation (level-sets) of the design variables, which significantly reduces the number of design variables needed in either single or two stage approaches. The number of design variables in the formulation is independent from the meshing size, which enables application of non-gradient methods to realistic designs. Test results of a short cantilever and an L-shaped bracket studies show reasonable success of both single and two stage approaches, with each approach having different merits.  相似文献   

8.
The paper presents a new nonlinear predictive control design for a kind of nonlinear mechatronic drive systems, which leads to the improvement of regulatory capacity for both reference input tracking and load disturbance rejection. The nonlinear system is first treated into an equal linear time-variant system plus a nonlinear part using a neural network, then an iterative learning linear predictive controller is developed with a similar structure of PI optimal regulator and with setpoint feed forward control. Because the overall control law is a linear one, this design gives a direct and also effective multi-step prediction method and avoids the complicated nonlinear optimization. The control law is also an accurate one compared with traditional linearized method. Besides, changes of the system state variables are considered in the objective function with control performance superior to conventional state space predictive control designs which only consider the predicted output errors. The proposed method is compared with conventional state space predictive control method and classical PI optimal control method. Tracking performance, robustness and disturbance rejection are enlightened.  相似文献   

9.
This paper develops a method to tune fuzzy controllers using numerical optimization. The main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve global performance requirements. Furthermore, this approach allows design constraints to be implemented during the tuning process. The method tunes the controller by parameterizing the membership functions for error, change-in-error, and control output. The resulting parameters form a design vector which is iteratively changed to minimize an objective function. The minimal objective function results in an optimal performance of the system. A spacecraft mounted science payload line-of-sight pointing control is used to demonstrate results.  相似文献   

10.
11 Introduction The filters are widely used in many applications of signal processing. Filter design is an important research problem in many diverse application areas. The filters we usually refer to are temporal filters, which pass the frequency components of interest and attenuate the others. A spatial filter passes the signal radiating from a specific location and attenuates signals from other locations. Beamformer that widely used in radar, sonar,and wireless communications is a kind of …  相似文献   

11.
Truss optimization based on the ground structure approach often leads to designs that are too complex for practical purposes. In this paper we present an approach for design complexity control in truss optimization. The approach is based on design complexity measures related to the number of bars (similar to Asadpoure et al. Struct Multidisc Optim 51(2):385–396 2015) and a novel complexity measure related to the number of nodes of the structure. Both complexity measures are continuously differentiable and thus can be used together with gradient based optimization algorithms. The numerical examples show that the proposed approach is able to reduce design complexity, leading to solutions that are more fit for engineering practice. Besides, the examples also indicate that in some cases it is possible to significantly reduce design complexity with little impact on structural performance. Since the complexity measures are non convex, a global gradient based optimization algorithm is employed. Finally, a detailed comparison to a classical approach is presented.  相似文献   

12.
We develop nonsmooth optimization techniques to solve H/sub /spl infin// synthesis problems under additional structural constraints on the controller. Our approach avoids the use of Lyapunov variables and therefore leads to moderate size optimization programs even for very large systems. The proposed framework is versatile and can accommodate a number of challenging design problems including static, fixed-order, fixed-structure, decentralized control, design of PID controllers and simultaneous design and stabilization problems. Our algorithmic strategy uses generalized gradients and bundling techniques suited for the H/sub /spl infin// norm and other nonsmooth performance criteria. We compute descent directions by solving quadratic programs and generate steps via line search. Convergence to a critical point from an arbitrary starting point is proved and numerical tests are included to validate our methods. The proposed approach proves to be efficient even for systems with several hundreds of states.  相似文献   

13.
Mrta  Xavier  Hkan  Grard 《Automatica》2008,44(12):3070-3078
This paper presents a new controller validation method for linear multivariable time-invariant models. Classical prediction error system identification methods deliver uncertainty regions which are nonstandard in the robust control literature. Our controller validation criterion computes an upper bound for the worst case performance, measured in terms of the -norm of a weighted closed loop transfer matrix, achieved by a given controller over all plants in such uncertainty sets. This upper bound on the worst case performance is computed via an LMI-based optimization problem and is deduced via the separation of graph framework. Our main technical contribution is to derive, within that framework, a very general parametrization for the set of multipliers corresponding to the nonstandard uncertainty regions resulting from PE identification of MIMO systems. The proposed approach also allows for iterative experiment design. The results of this paper are asymptotic in the data length and it is assumed that the model structure is flexible enough to capture the true system.  相似文献   

14.
This paper proposes a novel method for the incremental design and optimization of first order Tagaki-Sugeno-Kang (TSK) fuzzy controllers by means of an evolutionary algorithm. Starting with a single linear control law, the controller structure is gradually refined during the evolution. Structural augmentation is intertwined with evolutionary adaptation of the additional parameters with the objective not only to improve the control performance but also to maximize the stability region of the nonlinear system. From the viewpoint of optimization the proposed method follows a divide-and-conquer approach. Additional rules and their parameters are introduced into the controller structure in a neutral fashion, such that the adaptations of the less complex controller in the previous stage are initially preserved. The proposed scheme is evaluated at the task of TSK fuzzy controller design for the upswing and stabilization of a rotational inverted pendulum. In the first case, the objective is a time optimal controller that upswings the pendulum in to the upper equilibrium point in shortest time. The stabilizing controller is designed as a state optimal controller. In a second application the optimization method is applied to the design of a fuzzy controller for vision-based mobile robot navigation. The results demonstrate that the incremental scheme generates solutions that are similar in control performance to pure parameter optimization of only the gains of a TSK system. Even more important, whereas direct optimization of control systems with more than 35 rules fails to identify a stabilizing control law, the incremental scheme optimizes fuzzy state-space partitions and gains for hundreds of rules.  相似文献   

15.
In this paper, a new framework of a two loop disturbance rejection control and its design methodology are proposed. The framework consists of a robust internal-loop compensator (RIC) to eliminate disturbances and an external-loop controller to achieve nominal control performance. As the main contribution of this paper, we define the design problem of the RIC as a regulation control problem, then show that this new definition with the RIC structure provides more design flexibility and less implementation constraints, which allows us to design the RIC aggressively against a specific disturbance. This is verified through a comparative structural analysis with a disturbance observer (DOB) and an adaptive robust control (ARC). Two design examples of the RIC are given, along with practical issues that should be considered in the design procedure. The proposed framework is demonstrated by simulations and experiments.  相似文献   

16.
This paper presents an approach to design robust fixed structure controllers for uncertain systems using a finite set of measurements in the frequency domain. In traditional control system design, usually, based on measurements, a model of the plant, which is only an approximation of the physical system, is first built, and then control approaches are used to design a controller based on the identified model. Errors associated with the identification process as well as the inevitable uncertainties associated with plant parameter variations, external disturbances, measurement noise, etc. are expected to all contribute to the degradation of the performance of such a scheme. In this paper, we propose a nonparametric method that uses frequency-domain data to directly design a robust controller, for a class of uncertainties, without the need for model identification. The proposed technique, which is based on interval analysis, allows us to take into account the plant uncertainties during the controller synthesis itself. The technique relies on computing the controller parameters for which the set of all possible frequency responses of the closed-loop system are included in the envelope of a desired frequency response. Such an inclusion problem can be solved using interval techniques. The main advantages of the proposed approach are: (1) the control design does not require any mathematical model, (2) the controller is robust with respect to plant uncertainties, and (3) the controller structure can be chosen a priori, which allows us to select low-order controllers. To illustrate the proposed method and demonstrate its efficacy, an application to an air flow heating system is presented.  相似文献   

17.
Multi-Agent Coordination by Decentralized Estimation and Control   总被引:1,自引:0,他引:1  
We describe a framework for the design of collective behaviors for groups of identical mobile agents. The approach is based on decentralized simultaneous estimation and control, where each agent communicates with neighbors and estimates the global performance properties of the swarm needed to make a local control decision. Challenges of the approach include designing a control law with desired convergence properties, assuming each agent has perfect global knowledge; designing an estimator that allows each agent to make correct estimates of the global properties needed to implement the controller; and possibly modifying the controller to recover desired convergence properties when using the estimates of global performance. We apply this framework to the problem of controlling the moment statistics describing the location and shape of a swarm. We derive conditions which guarantee that the formation statistics are driven to desired values, even in the presence of a changing network topology.   相似文献   

18.
In this paper, a new data‐driven model predictive control (MPC), based on bilinear subspace identification, is considered. The system's nonlinear behavior is described with a bilinear subspace predictor structure in an MPC framework. Thus, the MPC formulation results in a fixed structure objective function with constraints regardless of the underlying nonlinearity. For unconstrained systems, the identified subspace predictor matrices can be directly used as controller parameters. Therefore, we design optimization algorithms that exploit this feature. The open‐loop optimization problem of MPC that is nonlinear in nature is solved with series quadratic programming (SQP) without any approximations. The computational efficiency already demonstrated with the current formulation presents further opportunities to enable online control of nonlinear systems. These improvements and close integration of modeling and control also eliminate the intermediate design step, which provides a means for data‐driven controller design in generalized predictive controller (GPC) framework. Finally, the proposed control approach is illustrated with a verification study of a nonlinear continuously stirred tank reactor (CSTR) system. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

19.
本文研究了能量受限无线网络化控制系统的设计和分析问题.首先建立了无线网络化控制系统中通信传输时的数据误码率和丢包率间的定量关系,从而在通信功率与系统性能之间建立了联系.进而设计了基于事件触发策略和功率优化机制的智能控制器,该方法充分考虑了网络节能与控制系统性能表现两方面的要求,通过添加事件触发机制减少了系统的通信次数,并在此基础上以优化算法优化单次发送功率.随后,在随机稳定框架下给出了相应闭环系统稳定的充分性条件,在理论上证明了在该充分条件下,本文的设计能够在降低通信能耗的同时令系统维持预期的性能表现.最后数值例子证明了所提出方法的有效性.  相似文献   

20.
In this paper, we present a novel data-driven design method for the human-robot interaction (HRI) system, where a given task is achieved by cooperation between the human and the robot. The presented HRI controller design is a two-level control design approach consisting of a task-oriented performance optimization design and a plant-oriented impedance controller design. The task-oriented design minimizes the human effort and guarantees the perfect task tracking in the outer-loop, while the plant-oriented achieves the desired impedance from the human to the robot manipulator end-effector in the inner-loop. Data-driven reinforcement learning techniques are used for performance optimization in the outer-loop to assign the optimal impedance parameters. In the inner-loop, a velocity-free filter is designed to avoid the requirement of end-effector velocity measurement. On this basis, an adaptive controller is designed to achieve the desired impedance of the robot manipulator in the task space. The simulation and experiment of a robot manipulator are conducted to verify the efficacy of the presented HRI design framework.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号