首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对传统火灾探测器检测范围有限,传统火灾检测算法精度不高、检测时间长等问题,提出一种基于改进YOLOV3的火灾检测方法YOLOV3-IMP。在YOLOV3网络结构上进行改进,包含对特征提取网络改进和多尺度检测改进,提高对浅层特征的学习能力;通过改进的K-means聚类算法生成出初始先验框;通过改进的损失函数提高对小火灾区域的检测能力;在输出火灾检测图像之前采用Softer-NMS算法,提高对重叠区域的检测能力。实验结果表明,改进的算法准确率和召回率为91.6%,83.2%,[mAP]高达84.5%,检测速度可达0.28?s,可以满足火灾检测的实时性和准确性,能够实现有效的火灾检测。  相似文献   

2.
针对YOLOv4在自建的汽车钢铁零件表面缺陷数据集中检测精度不足的问题,利用深度学习的优势,提出一种基于改进YOLOv4的汽车钢铁零件表面缺陷检测方法。首先采用加权K-means算法确定初始anchors预选框,增强anchors框和特征图尺寸的匹配精度,提高检测效率;然后在YOLOv4主干网络的残差单元中引入SE模块,增加有用特征的权重,抑制无效特征的权重来提高检测精度;最后在76×76的特征图后连接RFB-s模块,增强对小目标信息的特征提取能力。实验结果表明,针对自建汽车零件表面缺陷数据集有无缺陷单类检测问题,改进算法比原始YOLOv4的mAP50值提高了4.3个百分点,对小目标具有更好的检测效果。这说明改进算法能满足针对特定的汽车钢铁零件表面缺陷检测问题下的检测速度和精度要求,有效解决了实际问题。针对COCO数据集多分类问题,改进后模型的mAP50值比原始YOLOv4提高了0.2个百分点,FPS值达到20,说明改进算法能够迁移到其他数据集,验证了该算法的泛化性。  相似文献   

3.
赵慧  钮焱  李军 《计算机仿真》2024,(3):188-194+213
针对钢材表面缺陷检测精度低,易漏检、误检、定位不准确等问题,提出一种基于改进YOLOv4的钢材表面缺陷检测算法,首先使用K-means++算法分析标注框的分布信息,获取最优的锚框,提高定位精度,减少网络损失;其次在YOLOv4网络原有特征层基础上继续增加一浅层特征即尺度为104×104的新特征层,增大特征检测尺度,提高小缺陷目标检测精度;最后在原始主干网络的基础上引进注意力机制,使网络更多关注有用信息,从而使检测更准确。将上述算法与其它算法在NEU-DET数据集上进行对比实验,所提算法平均检测精度相较于原YOLOv4提高了4.69%达到78.10%,相较于目前其它的主流目标检测算法也更优秀。  相似文献   

4.
针对轧刚表面缺陷种类多样、形状多变导致检测效率低、精度差的问题,提出了一种改进YOLOv3的轧钢表面缺陷检测算法。首先,对骨干网络提取的特征采用PSA金字塔拆分注意力模块进行多尺度融合。其次,采用PAN结构代替FPN,使得浅层语义和深层语义的特征能充分融合。接着采用Decoupled_Head,将回归预测和逻辑预测分离以避免之间的干扰。最后,在损失函数方面,根据真实框大小赋予不同权值,以提高网络对小目标的检测效果。实验表明改进后的YOLOv3在NEU-DEU数据集上的平均检测精度为80.01%,比原始的YOLOv3提高了3.05%,且相较于YOLOx、YOLOv5等算法也有较大的检测精度优势。  相似文献   

5.
为了加强海上交通的安全性,以常见的民用船和军用船为研究对象,针对原始YOLOV3算法在船舶数据集上检测精度不高、目标框出现误检和小目标漏检的问题,提出了改进的船舶检测算法MS-YOLOV3。构建船舶图像数据集Shipdataset,包括数据采集、增强和标签标注,使用维度聚类算法在该数据集中找出合适尺寸的先验框,并应用于相对应的尺度特征图。以Darknet-53的网络框架为基础特征提取网络,增加网络预测尺度,在多尺度特征融合中加入DCA融合策略,提高模型对船舶的检测能力。以MS-YOLOV3为算法框架,采用GIOU作为边框损失函数的参数,提升模型对边界框位置信息的预测准确度。结果MS-YOLOV3与YOLOV3检测算法的对比实验表明,前者在船舶数据集上的精度有7.9个百分点的提升。同时加入的GIOU边框损失,拉低了模型的平均损失,加强了模型的鲁棒性,使得目标框的定位误差大大减小。根据Pascal VOC2007数据集上的训练效果,MS-YOLOV3的平均精度相较于YOLO系列算法、SSD300和Faster-RCNN,精确度优势更加明显。提出的MS-YOLOV3检测模型使得船舶的位置信息和类别精度更加准确。  相似文献   

6.
由于监控中的行人检测存在背景复杂,目标尺度和姿态多样性及人与周围物体互相遮挡的问题,造成YOLOV3对部分目标检测不准确,会产生误检、漏检或重复检测的情况。因此,在YOLOV3的网络基础上,利用残差结构思想,将浅层特征和深层特征进行上采样连接融合得到104×104尺度检测层,并将K-means算法聚类得到的边界框尺寸应用到各尺度网络层,增加网络对多尺度、多姿态目标的敏感度,提高检测效果。同时,利用预测框对周围其他目标的斥力损失更新YOLOV3损失函数,使预测框向正确的目标靠近,远离错误的目标,降低模型的误检率,以改善目标间互相遮挡而影响的检测效果。实验结果证明,在MOT16数据集上,相比YOLOV3算法,提出的网络模型具有更好的检测效果,证明了方法的有效性。  相似文献   

7.
交通标志检测是智能驾驶任务中的重要一环。为了满足检测精度和实时检测的要求,基于YOLOV3提出一种改进的实时交通标志检测算法。采用跨阶段局部网络作为特征提取模块,优化梯度信息,减少推理计算量;同时以路径聚合网络替代特征金字塔网络,在解决多尺度特征融合的同时,保留了更加准确的目标空间信息,提高目标检测精度;并且引入完备交并比损失函数替代均方误差损失,提高定位精度。与其他目标检测算法在CCTSDB数据集上进行对比检测,实验结果表明,改进后的算法平均精度达到95.2%,检测速度达到113.6?frame/s,与YOLOV3算法相比,分别提升2.37%和142%。  相似文献   

8.
针对人工检测电子元器件表面缺陷时存在检测精度差与检测速度慢的问题,提出了一种基于改进Faster-Rcnn的电子元器件表面缺陷检测算法。通过将主干网络替换为ResNet101,并在主干网络中加入可变形卷积,增强了主干网络的特征提取能力。通过在网络整体结构中加入FPN结构进行特征融合,提升了网络模型的检测精度。通过使用ROI Align区域特征聚集方式替代原模型中的ROI Pooling方式,解决了ROI Pooling方式中两次量化操作造成的区域不匹配的问题。通过将原模型中的SmoothL1损失改为CIoU损失,使预测框更加符合真实框。实验结果表明,改进后的Faster-Rcnn算法在测试集上的精确度取得了显著的提升。  相似文献   

9.
针对金属表面缺陷检测中目标尺寸小和特征不清晰导致漏检的问题,提出一种改进YOLOv3的金属缺陷检测算法。在YOLOv3网络结构的基础上,将第11层浅层特征与网络深层特征融合,生成一个新的尺度为104×104特征图层,提取更多小缺陷目标特征。加入DIoU边框回归损失,为边界框提供移动方向以及更准确的位置信息,加快模型收敛。利用K-Means++聚类分析数据集上的先验框尺寸信息,筛选出最优的Anchor Box,使定位更加精准,降低网络损失。将改进后的算法与其他检测算法在NEU-DET数据集上进行检测性能对比。实验分析表明改进后的YOLOv3平均检测速率为31.6?frame/s;平均检测精度为67.64%,比YOLOv3提高了7.49个百分点,相较于Faster R-CNN等算法也有较大的检测精度优势。结论表明,改进后的YOLOv3可以使小缺陷目标的位置信息和精度更加准确。  相似文献   

10.
文中提出了一种基于改进YOLOv3算法的烟盒缺陷检测方法。在YOLOv3原网络中增加4倍降采样,改变YOLOv3目标框损失IoU为GIoU,改善候选框与真实框尺度敏感性。实验结果表明,改进后网络的平均检测精度由90.81%提升到97.29%,查准率提高7%,查全率提高7%,平均检测速度略有下降,但不影响烟盒表面缺陷的实时检测。总体而言,该方法相对于传统烟盒缺陷检测方法检测效率更高。  相似文献   

11.
针对现有的火焰检测算法检测平均精度低、小目标火焰漏检率高的问题,提出一种改进YOLOV5的火焰检测算法。该算法使用Transformer Encode模块代替YOLOV5主干网络末端的CSP bottleneck模块,以增强网络捕获不同局部信息的能力,提高火焰检测的平均精度,并且在YOLOV5网络中增加CBAM注意力模块,增强网络提取图像特征的能力,对于小目标火焰能够较好地提取特征,降低小目标火焰的漏检率。将该算法在公开数据集BoWFire、Bilkent上进行实验,结果表明,改进YOLOV5网络的火焰检测平均精度更高,可达83.9%,小目标火焰漏检率更低,仅为1.6%,检测速率为34帧/s,相比于原YOLOV5网络,平均精度提升了2.4个百分点,小目标火焰漏检率降低了4.1个百分点,改进后的YOLOV5网络能够满足火焰检测的实时性和精度要求。  相似文献   

12.
针对桥梁裂缝固有特征及检测过程的局限性,引入基于卷积神经网络的YOLOv3单阶段目标检测算法,并对YOLOV3网络的多尺度预测模块进行改进,充分利用浅层特征,提升小裂缝检测精度.通过聚类算法对数据集进行聚类,得到适用于桥梁裂缝特征的先验框尺寸.数据集方面引入生成对抗网络对桥梁裂缝数据集进行扩增.实验结果表明,在相同数据集和迭代次数下,改进YOLOv3网络裂缝检测精度可达0.9302,比原YOLOv3提高0.0137.  相似文献   

13.
针对木条表面死结和活结缺陷在检测过程中定位困难、平均识别精确度较低、检测速度较慢的问题,在分析木结缺陷特点和改进深度学习YOLOv3模型的基础上,研究其应用于改善木结缺陷检测时的精确度和速度。首先,对活结缺陷图像进行数据扩增,以解决类别不平衡问题。然后,改进k-means++算法,提升木结缺陷目标框的维度聚类效果,得到更合适的初始目标框个数与尺寸;通过缩减YOLOv3中多尺度检测网络、改进损失函数,以减少检测时间和提高目标识别精确度。最后,对木结缺陷进行拼接得出位置坐标。试验结果表明,较改进前YOLOv3算法,mAP值提升7.47%,检测速度提高35%;较Faster R-CNN算法mAP值提升11.68%,检测速度提高约15倍,改进后模型能精确地检测出死结和活结缺陷。因此,在后续研究中,可考虑以YOLOv3算法作为检测木结缺陷模型,进一步改进YOLOv3网络,以提高检测实时性和精确度。  相似文献   

14.
YOLOV4 Tiny目标检测算法是通过卷积神经网络提取特征,进行预测类别和边界框坐标的经典深度学习算法,是YOLOV4目标检测算法的简化版,没有使用Mish激活函数来提取特征,而只使用特征金字塔来增强特征层,因此不需要进行下采样.存在的不足是检测精度比较低.文章针对YOLOV4 Tiny算法存在的不足进行了改进,将低...  相似文献   

15.
为防止病毒的传播,提出一种可以识别人们在公共场合下是否佩戴口罩的目标检测算法。以YOLOV3为基础,将Darknet-53骨干网络结构与Inception-v4思想相结合,在特征提取网络中引入空间金字塔池化(spatial pyramid pooling,SPP)结构,使特征得到增强,准确率得到提升;选取GIoU (generalized intersection over union)损失函数作为评价指标。实验结果表明,改进后的YOLOV3算法能够有效进行口罩佩戴检测,其算法的平均精度均值相比于原始的YOLOV3提高5.4%,达到90.1%。  相似文献   

16.
针对硬币表面缺陷较小、形状多变且易与背景混淆而不易检出的问题,改进YOLOv3算法并提出基于可变形卷积和自适应空间特征融合的硬币表面缺陷检测算法DCA-YOLO。首先,由于缺陷形状的多变设计了3种在主干网络中不同位置添加可变形卷积模块的网络结构,通过卷积学习偏移量和调节参数来提高缺陷的提取能力;然后,使用自适应空间特征融合网络学习权重参数来调整不同尺度特征图中各像素点的贡献度以更好地适应不同尺度的目标;最后,改进先验锚框比例,动态调节类别权重,优化并对比网络性能,从而提出在主干网络输出特征进行多尺度融合的上采样前增加可变形卷积的模型网络。实验结果表明,在硬币缺陷数据集上,DCA-YOLO算法检测平均精度均值(mAP)接近于Faster-RCNN,达到了92.8%;而相较于YOLOv3,所提算法的检测速度基本持平,在检测mAP上提高了3.3个百分点,F1分数提升了3.2个百分点。  相似文献   

17.
Tiny-YOLOV3是目标检测领域常用的检测算法,相比较YOLOV3,其优点是神经网络层比较简单,计算量少,且对硬件的配置要求较低,因此可以保证检测的实时性,但由于网络层比较少,检测的精度也较低。为了提高Tiny-YOLOV3在网络中的检测精度,提出一类Tiny-YOLOV3改进模型,调整检测网络架构的损失结构层,以卷积层和特征图的相关系数矩阵表征特征图分布,设计损失函数优化损失特征层分布,增强网络特征的表达能力。结合NAO机器人平台,采用三角函数定位将基于图像的目标检测位置转换为机器人坐标系位置。根据4 000张VOC数据格式自制数据集进行模型训练与测试,针对不同物体在变化位置下进行50次机器人手臂抓取实验。相比原始Tiny-YOLOV3模型,改进的网络模型在分辨率为640×480单张图片的检测速度35 帧/s前提下,检测mAP值提高了4.08%,置信度提高20%。实验结果表明算法在兼顾目标检测时间效率的前提下有效提高了目标检测准确度,可满足机器人在分拣、采摘、监控、服务等多样实时性应用场景需求。  相似文献   

18.
为解决部分遥感建筑物因为自身形状的不规则,导致传统矩形识别框算法对该类检测目标分割效果差,难以精确定位的问题,提出一种改进的Mask RCNN检测算法。改进Mask RCNN的主干网络FPN网络,简化特征融合过程,有效避免语义信息丢失;改进Mask RCNN的RPN网络,针对识别框的重复计算,提升其运算效率,提高检出率;调节mask掩膜参数,提高分割效果。实验结果表明,改进Mask RCNN目标检测算法的检测精度和召回率达到了99.80%和97.88%,较原算法分别提高了1.54%和1.65%,有效优化了遥感领域不规则建筑物的检测问题。  相似文献   

19.
优质木材深受人们喜爱,但木材存在多种缺陷导致优质木材产量少,木材利用率低。运用深度学习的目标检测算法可以实现木材表面缺陷的快速稳定检测,以此提高木材的优质化和利用率。针对目前木材表面缺陷目标小、密集和复杂等特点导致检测精度较差的问题,提出了一种基于改进YOLOv7的木材表面缺陷检测模型YOLOv7-ESS。针对木材的裂缝缺陷存在极端长宽比例而影响检测效果的问题,嵌入注意力模块ECBAM,通过加强对极端长宽比例缺陷的注意力,提高模型的特征提取能力。针对在提取特征时木材表面小缺陷特征信息丢失严重的问题,引入浅层加权特征融合网络SFPN,以深层特征图作为输出,同时有效利用浅层特征信息,提高小缺陷的识别准确率。引入SIoU损失函数,提升模型收敛速度及模型精度。结果表明,YOLOv7-ESS模型平均检测精度为94.7%,较YOLOv7检测精度提高了11.2个百分点,满足木材生产加工时的缺陷检测要求。  相似文献   

20.
为了解决由于型钢表面缺陷形态多样、微小缺陷众多所带来的检测效率低与检测精度差的问题,提出一种基于可变形卷积与多尺度-密集特征金字塔的型钢表面缺陷检测算法——Steel-YOLOv3。首先,使用可变形卷积代替Darknet53网络部分残差单元的卷积层,从而强化特征提取网络对型钢表面多类型缺陷的特征学习能力;其次,设计了多尺度-密集特征金字塔模块:在原有YOLOv3算法的3层预测尺度上增加1层更浅层的预测尺度,再对多尺度特征图进行跨层密集连接,从而增强对密集微小缺陷的表征能力;最后,针对型钢缺陷尺寸分布特点,使用K-means维度聚类方法优化先验框尺寸并将先验框平均分配到4个对应预测尺度上。实验结果表明:Steel-YOLOv3算法具有89.24%的检测平均精度均值(mAP),与Faster R-CNN(Faster Region-based Convolutional Neural Network)、SSD(Single Shot MultiBox Detector)、YOLOv3和YOLOv5算法相比分别提高了3.51%、26.46%、12.63%和5.71%,且所提算法显著提升了微小剥落缺陷的检出率。另外,所提算法的每秒检测图像数量达到25.62张,满足实时检测的要求,可实际应用于型钢表面缺陷的在线检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号