共查询到16条相似文献,搜索用时 52 毫秒
1.
在Web安全问题的研究中,如何提高Web恶意代码的检测效率一直是Web恶意代码检测方法研究中需要解决的问题。为此,针对跨站脚本漏洞、ActiveX控件漏洞和Web Shellcode方面的检测,提出一种基于行为语义分析的Web恶意代码检测机制。通过对上述漏洞的行为和语义进行分析,提取行为特征,构建Web客户端脚本解析引擎和Web Shellcode检测引擎,实现对跨站脚本漏洞、ActiveX控件漏洞和Web Shellcode等的正确检测,以及对Web Shellcode攻击行为进行取证的功能。实验分析结果表明,新的Web恶意代码检测机制具有检测能力强、漏检率低的性能。 相似文献
2.
恶意代码变种给信息系统安全造成了巨大威胁, 为有效检测变种恶意代码, 通过动态监控、解析系统调用及参数, 将不同对象操作关联到同一对象, 构建对象状态变迁图, 然后对状态变迁图进行抗混淆处理, 获取具有一定抗干扰性的恶意代码行为特征图。最后, 基于该特征图检测未知代码。实验结果表明, 该方法能够有效抵抗恶意代码重排、垃圾系统调用等混淆技术干扰, 而且误报率低, 在检测变种恶意代码时具有较好的效果。 相似文献
3.
4.
5.
6.
7.
8.
9.
10.
现有恶意代码的检测往往依赖于对足够数量样本的分析.然而新型恶意代码大量涌现,其出现之初,样本数量有限,现有方法无法迅速检测出新型恶意代码及其变种.本文在数据流依赖网络中分析进程访问行为异常度与相似度,引入了恶意代码检测估计风险,并提出一种通过最小化估计风险实现主动学习的恶意代码检测方法.该方法只需要很少比例的训练样本就可实现准确的恶意代码检测,较现有方法更适用于新型恶意代码检测.通过我们对真实的8,340个正常进程以及7,257个恶意代码进程的实验分析,相比于传统基于统计分类器的检测方法,本文方法明显地提升了恶意代码检测效果.即便在训练样本仅为总体样本数量1%的情况下,本文方法可以也可达到5.55%的错误率水平,比传统方法降低了36.5%. 相似文献
11.
提出了一个基于带有惩罚因子的阴性选择算法的恶意程序检测模型.该模型从指令频率和包含相应指令的文件频率两个角度出发,对指令进行了深入的趋向性分析,提取出了趋向于代表恶意程序的恶意程序指令库.利用这些指令,有序切分程序比特串,模型提取得到恶意程序候选特征库和合法程序类恶意程序特征库.在此基础上,文中提出了一种带有惩罚因子的阴性选择算法(negative selection algorithm with penalty factor,NSAPF),根据异体和自体的匹配情况,采用惩罚的方式,对恶意程序候选特征进行划分,组成了恶意程序检测特征库1(malware detection signature library 1,MDSL1)和恶意程序检测特征库2(MDSL2),以此作为检测可疑程序的二维参照物.综合可疑程序和MDSL1,MDSL2的匹配值,文中模型将可疑程序分类到合法程序和恶意程序.通过在阴性选择算法中引入惩罚因子C,摆脱了传统阴性选择算法中对自体和异体有害性定义的缺陷,继而关注程序代码本身的危险性,充分挖掘和调节了特征的表征性,既提高了模型的检测效果,又使模型可以满足用户对识别率和虚警率的不同要求.综合实验... 相似文献
12.
网络计算系统中涉及的操作复杂,很难直接给出一种的语义描述框架.作为一种网络计算模型,Ambient演算主要刻画了计算的分布性和移动性.目前关于Ambient的语义研究很多,但均是基于规约规则的语义形式.这种描述方式尽管简洁,一方面却具有不确定性,不利于实际的网络计算系统的设计和直接实现;另一方面,这种语义描述方式均在一个层次上描述Ambient演算系统中的各种行为语义,使得Ambient演算中各种计算行为纠缠在一起,复杂而难以理解.根据Ambient演算的结构特点,给出了Ambient演算的一种分层语义描述形式,系统以ambient为单元,分成3层进行描述,分别给出不同层上行为的语法定义、语义定义、语义方程以及不同层间的转换函数的定义,从而给出Ambient演算系统的指称语义描述形式.这种描述方式从层次化的角度分析了Ambient演算的计算行为,有助于对Ambient演算中行为的理解和实际应用系统的实现. 相似文献
13.
针对当前Android平台资源受限及恶意软件检测能力不足这一问题,以现有Android安装方式、触发方式和恶意负载方面的行为特征为识别基础,构建了基于ROM定制的Android软件行为动态监控框架,采用信息增益、卡方检验和Fisher Score的特征选择方法,评估了支持向量机(SVM)、决策树、k-邻近(KNN)和朴素贝叶斯(NB)分类器四类算法在Android恶意软件分类检测方面的有效性。通过对20916个恶意样本及17086个正常样本的行为日志的整体分类效果进行评估,结果显示,SVM算法在恶意软件判定上准确率可以达到93%以上,误报率低于2%,整体效果最优。可应用于在线云端分析环境和检测平台,满足海量样本处理需求。 相似文献
14.
开放式网络攻击特征库的设计与实现 总被引:5,自引:0,他引:5
随着网络攻击的全球化,入侵检测系统要保护的不再是个别子网,而是整个的网络环境.由此,产生了对入侵检测开放式资源的迫切需求.本文的工作实现了一个开放式的网络攻击特征库系统,它包括了1200多条有效的攻击特征.本文设计并实现了用于攻击特征实时更新的攻击特征交换协议(ISEP),并描述了其中基于数字证书扣角色的访问控制技术.最后,通过Nachi蠕虫的实例说明了本特征库中攻击特征的提取方法. 相似文献
15.
安卓操作系统和恶意软件的持续进化导致现有检测方法的性能随时间大幅下降. 提出一种基于API聚类和调用图优化的安卓恶意软件检测方法DroidSA (droid slow aging). 首先, 在恶意软件检测之前进行API聚类, 生成代表API功能的聚类中心. 通过设计API句子概括API的名称、权限等重要特征并使用自然语言处理工具对API句子的语义信息进行挖掘, 获得更全面反映API语义相似性的嵌入向量, 使聚类结果更为准确. 然后, 为了确保提取到更能准确反映软件行为逻辑的API上下文信息, 采用调用图优化方法对从待检测软件中提取的函数调用图进行优化并得到优化后的调用图, 在删除图中难以识别的未知方法的同时保留API节点之间的连接性. 为了提高对安卓框架和恶意软件变化的适应性, DroidSA从优化后的调用图中提取函数调用对, 将调用对中的API抽象为API聚类时获得的聚类中心. 最后, 使用独热编码生成特征向量, 并从随机森林、支持向量机和K近邻算法中选择表现最好的分类器进行恶意软件检测. 实验结果表明, DroidSA的恶意软件检测平均F1值为96.7%; 在消除时间偏差的实验设置下, 经2012–2013年的软件样本集合训练后, DroidSA对2014–2018年的恶意软件样本的检测平均F1值达到82.6%. 与经典检测方法MaMaDroid和MalScan等相比, DroidSA始终能将各项检测指标稳定地维持在高水平且受到时间变化的影响较小, 能有效检测进化后的恶意软件. 相似文献