首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 52 毫秒
1.
在Web安全问题的研究中,如何提高Web恶意代码的检测效率一直是Web恶意代码检测方法研究中需要解决的问题。为此,针对跨站脚本漏洞、ActiveX控件漏洞和Web Shellcode方面的检测,提出一种基于行为语义分析的Web恶意代码检测机制。通过对上述漏洞的行为和语义进行分析,提取行为特征,构建Web客户端脚本解析引擎和Web Shellcode检测引擎,实现对跨站脚本漏洞、ActiveX控件漏洞和Web Shellcode等的正确检测,以及对Web Shellcode攻击行为进行取证的功能。实验分析结果表明,新的Web恶意代码检测机制具有检测能力强、漏检率低的性能。  相似文献   

2.
任李  潘晓中 《计算机应用研究》2013,30(10):3106-3109
恶意代码变种给信息系统安全造成了巨大威胁, 为有效检测变种恶意代码, 通过动态监控、解析系统调用及参数, 将不同对象操作关联到同一对象, 构建对象状态变迁图, 然后对状态变迁图进行抗混淆处理, 获取具有一定抗干扰性的恶意代码行为特征图。最后, 基于该特征图检测未知代码。实验结果表明, 该方法能够有效抵抗恶意代码重排、垃圾系统调用等混淆技术干扰, 而且误报率低, 在检测变种恶意代码时具有较好的效果。  相似文献   

3.
针对已有恶意代码检测技术存在不足,研究恶意代码网络传播行为,提取相应行为特征,在此基础上提出基于行为的分布式恶意代码检测技术,并进行NS-2仿真实验。实验结果表明该方法具有较低的误报率和漏报率,可有效检测恶意代码。  相似文献   

4.
代码迷惑是一种以增加理解难度为目的的代码变换技术,主要来保护软件免遭逆向分析。恶意代码的作者为了躲避检测经常采用代码迷惑技术对程序进行转换。但是商用反病毒软件采用基于特征码的模式匹配技术而忽略了恶意代码的语义,因此最容易受到代码迷惑或病毒变种的攻击。文章中提出一种基于语义匹配的检测算法,能准确的检测出经过代码迷惑处理的恶意代码。该方法应用数据流分析技术,以变量定义使用链为单元检测每个模板及程序节点。最后通过部分实验展示了原型系统的检测效果。  相似文献   

5.
研究基于行为特征的恶意代码检测模型及其实现方式,并分析实现中的关键技术。使用自定义行为特征编码模板进行恶意代码匹配,将短周期内2次匹配成功作为判定恶意代码的标准,利用最大熵原理分析2次恶意代码行为的信息论特征。实验结果表明,该方法具有较低的病毒检测误报率和漏报率,并且能有效防范未知恶意代码。  相似文献   

6.
基于行为的判别已成为恶意代码检测技术研究的主流方向,现有方法容易受到拟态攻击或影子攻击的影响.针对这些问题,提出了一种全新的使用谓词时序逻辑描述恶意代码行为的方法,该方法能够同时刻画一组函数调用之间的逻辑组合、时序、参数依赖和主客体关联等关系,因此能更准确细致地描述恶意代码行为.在此基础上,提出了相应的恶意行为检测算法,通过实例测试验证了该方法的有效性.  相似文献   

7.
黄海新  张路  邓丽 《计算机科学》2016,43(7):13-18, 56
数据挖掘是一种基于统计学的自动发掘数据规律的方法,它能通过分析海量样本的统计规律来建立判别模型,从而让攻击者难以掌握免杀的规律,近年来得到了广泛关注和快速发展。综述了数据挖掘技术应用于恶意代码检测领域所取得的研究成果;对所涉及的特征提取、特征选择、分类模型及其性能评估方法等方面的研究成果进行了深入分析和比较;最后提出了基于数据挖掘的恶意代码检测所面临的挑战,并对研究方向进行了展望。  相似文献   

8.
恶意代码在网络中传播时不会表现出恶意行为,难以通过基于行为的检测方法检测出.采用基于特征的方法可以将其检测出,但需要进行网络包还原,这在大流量时对网络数据包进行还原不仅存在时空开销问题,且传统的特征提取方法提取的特征往往过长,容易被分割到多个网络数据包中,导致检测失效.本文提出非包还原恶意代码特征提取,采用自动化与人工分析相结合、基于片段的特征码提取,以及基于覆盖范围的特征码筛选等方法,实验结果表明,对恶意软件片段具有一定识别能力.  相似文献   

9.
金然  魏强  王清贤 《计算机工程》2008,34(5):169-170
许多未知恶意代码是由已知恶意代码变形而来。该文针对恶意代码常用的变形技术,包括等价指令替换、插入垃圾代码和指令重排,提出完整的归一化方案,以典型的变形病毒Win32.Evol对原型系统进行测试,是采用归一化思想检测变形恶意代码方面的有益尝试。  相似文献   

10.
毛蔚轩  蔡忠闽  童力 《软件学报》2017,28(2):384-397
现有恶意代码的检测往往依赖于对足够数量样本的分析.然而新型恶意代码大量涌现,其出现之初,样本数量有限,现有方法无法迅速检测出新型恶意代码及其变种.本文在数据流依赖网络中分析进程访问行为异常度与相似度,引入了恶意代码检测估计风险,并提出一种通过最小化估计风险实现主动学习的恶意代码检测方法.该方法只需要很少比例的训练样本就可实现准确的恶意代码检测,较现有方法更适用于新型恶意代码检测.通过我们对真实的8,340个正常进程以及7,257个恶意代码进程的实验分析,相比于传统基于统计分类器的检测方法,本文方法明显地提升了恶意代码检测效果.即便在训练样本仅为总体样本数量1%的情况下,本文方法可以也可达到5.55%的错误率水平,比传统方法降低了36.5%.  相似文献   

11.
提出了一个基于带有惩罚因子的阴性选择算法的恶意程序检测模型.该模型从指令频率和包含相应指令的文件频率两个角度出发,对指令进行了深入的趋向性分析,提取出了趋向于代表恶意程序的恶意程序指令库.利用这些指令,有序切分程序比特串,模型提取得到恶意程序候选特征库和合法程序类恶意程序特征库.在此基础上,文中提出了一种带有惩罚因子的阴性选择算法(negative selection algorithm with penalty factor,NSAPF),根据异体和自体的匹配情况,采用惩罚的方式,对恶意程序候选特征进行划分,组成了恶意程序检测特征库1(malware detection signature library 1,MDSL1)和恶意程序检测特征库2(MDSL2),以此作为检测可疑程序的二维参照物.综合可疑程序和MDSL1,MDSL2的匹配值,文中模型将可疑程序分类到合法程序和恶意程序.通过在阴性选择算法中引入惩罚因子C,摆脱了传统阴性选择算法中对自体和异体有害性定义的缺陷,继而关注程序代码本身的危险性,充分挖掘和调节了特征的表征性,既提高了模型的检测效果,又使模型可以满足用户对识别率和虚警率的不同要求.综合实验...  相似文献   

12.
网络计算系统中涉及的操作复杂,很难直接给出一种的语义描述框架.作为一种网络计算模型,Ambient演算主要刻画了计算的分布性和移动性.目前关于Ambient的语义研究很多,但均是基于规约规则的语义形式.这种描述方式尽管简洁,一方面却具有不确定性,不利于实际的网络计算系统的设计和直接实现;另一方面,这种语义描述方式均在一个层次上描述Ambient演算系统中的各种行为语义,使得Ambient演算中各种计算行为纠缠在一起,复杂而难以理解.根据Ambient演算的结构特点,给出了Ambient演算的一种分层语义描述形式,系统以ambient为单元,分成3层进行描述,分别给出不同层上行为的语法定义、语义定义、语义方程以及不同层间的转换函数的定义,从而给出Ambient演算系统的指称语义描述形式.这种描述方式从层次化的角度分析了Ambient演算的计算行为,有助于对Ambient演算中行为的理解和实际应用系统的实现.  相似文献   

13.
针对当前Android平台资源受限及恶意软件检测能力不足这一问题,以现有Android安装方式、触发方式和恶意负载方面的行为特征为识别基础,构建了基于ROM定制的Android软件行为动态监控框架,采用信息增益、卡方检验和Fisher Score的特征选择方法,评估了支持向量机(SVM)、决策树、k-邻近(KNN)和朴素贝叶斯(NB)分类器四类算法在Android恶意软件分类检测方面的有效性。通过对20916个恶意样本及17086个正常样本的行为日志的整体分类效果进行评估,结果显示,SVM算法在恶意软件判定上准确率可以达到93%以上,误报率低于2%,整体效果最优。可应用于在线云端分析环境和检测平台,满足海量样本处理需求。  相似文献   

14.
开放式网络攻击特征库的设计与实现   总被引:5,自引:0,他引:5  
随着网络攻击的全球化,入侵检测系统要保护的不再是个别子网,而是整个的网络环境.由此,产生了对入侵检测开放式资源的迫切需求.本文的工作实现了一个开放式的网络攻击特征库系统,它包括了1200多条有效的攻击特征.本文设计并实现了用于攻击特征实时更新的攻击特征交换协议(ISEP),并描述了其中基于数字证书扣角色的访问控制技术.最后,通过Nachi蠕虫的实例说明了本特征库中攻击特征的提取方法.  相似文献   

15.
杨宏宇  汪有为  张良  胡泽  姜来为  成翔 《软件学报》2025,36(7):3209-3225
安卓操作系统和恶意软件的持续进化导致现有检测方法的性能随时间大幅下降. 提出一种基于API聚类和调用图优化的安卓恶意软件检测方法DroidSA (droid slow aging). 首先, 在恶意软件检测之前进行API聚类, 生成代表API功能的聚类中心. 通过设计API句子概括API的名称、权限等重要特征并使用自然语言处理工具对API句子的语义信息进行挖掘, 获得更全面反映API语义相似性的嵌入向量, 使聚类结果更为准确. 然后, 为了确保提取到更能准确反映软件行为逻辑的API上下文信息, 采用调用图优化方法对从待检测软件中提取的函数调用图进行优化并得到优化后的调用图, 在删除图中难以识别的未知方法的同时保留API节点之间的连接性. 为了提高对安卓框架和恶意软件变化的适应性, DroidSA从优化后的调用图中提取函数调用对, 将调用对中的API抽象为API聚类时获得的聚类中心. 最后, 使用独热编码生成特征向量, 并从随机森林、支持向量机和K近邻算法中选择表现最好的分类器进行恶意软件检测. 实验结果表明, DroidSA的恶意软件检测平均F1值为96.7%; 在消除时间偏差的实验设置下, 经2012–2013年的软件样本集合训练后, DroidSA对2014–2018年的恶意软件样本的检测平均F1值达到82.6%. 与经典检测方法MaMaDroid和MalScan等相比, DroidSA始终能将各项检测指标稳定地维持在高水平且受到时间变化的影响较小, 能有效检测进化后的恶意软件.  相似文献   

16.
金然  魏强  王清贤 《计算机应用》2008,28(3):629-632
针对等价指令替换常用变形技术提出了相应的归一化方法。该方法先通过引入标准指令和建立等价转换规则来对检测代码进行重写处理;然后,再根据各基本块的数据依赖图对标准指令顺序进行调整。在该方法基础上,提出了一种综合归一化方案,该方案旨在能有效应对现实中使用了多种常用变形技术的恶意代码。最后以Win32.Evol,Win32.Zperm和Win32.Bistro为对象的实例研究验证了该方案的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号