首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This study evaluated the influence of upstream inputs into the Moderate Resolution Imaging Spectroradiometer (MODIS) primary productivity products, termed the MOD17, at tropical oil palm plantations (Elaeis guineensis Jacq.). Evaluation of MOD17 using oil palm plantations as test sites is ideal because the plantations are cultivated on large areas which are comparable with the size of MODIS pixels. It is difficult to find test sites covered by other single species in a whole pixel. The upstream inputs studied included (1) MODIS land cover, (2) the National Centers for Environmental Prediction–Department of Energy (NCEP-DOE) Reanalysis 2 meteorological data set, (3) MODIS leaf area index/fraction of photosynthetically active radiation (LAI/fPAR), and (4) MODIS maximum light-use efficiency (maximum LUE). Oil palm biometric and local meteorological data were utilized as ground data. Furthermore, scaling up oil palm LAI and fPAR from plot scale to regional scale (Peninsular Malaysia) was done empirically by correlating oil palm LAI derived from the hemispherical photography technique with radiance information from the Disaster Monitoring Constellation 2 satellite (UK-DMC 2). The upscaled LAI/fPAR developed in this study was used to evaluate the MODIS LAI/fPAR. The results showed that the MODIS land-cover product has an overall accuracy of 78.8% when compared to the Peninsular Malaysia land-use map produced by the Department of Agriculture, Malaysia. Regarding the NCEP-DOE Reanalysis 2 data set, vapour pressure deficit (VPD) and photosynthetically active radiation (PAR) contain large uncertainties in our study area. However, MODIS LAI and fPAR were correlated relatively well with the upscaled LAI (R2 = 0.50) and the upscaled fPAR (R2 = 0.60), respectively. The constant values of maximum LUE for croplands and evergreen broadleaf forest ecosystems are lower than the maximum LUE of oil palm. The relative predictive error assessment showed that the MOD17 net primary productivity (NPP) overestimated oil palm NPP derived from biometric methods by 142–204%. We replaced the upstream inputs of MOD17 by the local inputs for estimating oil palm GPP and NPP in Peninsular Malaysia. This was done by (1) assigning maximum LUE for oil palm plantations as a constant at 1.68 g C m?2 day?1, (2) utilizing meteorological data from local meteorological stations, and (3) using the upscaled fPAR of oil palm plantations. The amount of oil palm GPP and NPP for Peninsular Malaysia in 2010 were estimated to be ~0.09 Pg C year?1 (or equivalent to ~0.33 Pg CO2 year?1) and ~0.03 Pg C year?1 (~0.11 Pg CO2 year?1), respectively, indicating that oil palm plantations in Peninsular Malaysia can play an important role in global carbon sequestration. In the future there is likely to be a demand for MODIS GPP and NPP products that are more accurate than those currently generated by MOD17. We recommend future developments of the MOD17 processing system to allow improvements in the upstream input parameters, in the manner described in this article, both for global processing and for the production of more accurate values for GPP and NPP at regional and local scales.  相似文献   

2.
By using a land cover map, normalized difference vegetation index (NDVI) data sets, monthly meteorological data and observed net primary productivity (NPP) data, we have improved the method of estimating light use efficiency (LUE) for different biomes and soil moisture coefficients in the Carnegie–Ames–Stanford Approach (CASA) ecosystem model. Based on this improved model we produced an annual NPP map (in 1999) for the East Asia region located at 10–70° N, 70–170° E (about 19.66% of the terrestrial surface of the Earth). The results show that the mean NPP for the study area in 1999 was 374.12 g carbon (C) m?2 year?1 and the total NPP was 1.096 × 1014 kg C year?1, making up 17.51–18.39% of the global NPP. Comparison between the estimated NPP obtained from this improved CASA ecosystem model and the observed NPP obtained from two NPP databases indicates that the estimated NPP is close to the observed NPP, with an average error of 5.15% for the study region. We used two different land cover maps of China to drive the improved CASA model by keeping other inputs unchanged to determine how the classification accuracy of the land cover map affects the estimated NPP, and the results indicate that an accurate land cover map is important for obtaining an accurate and reliable estimate of NPP for some regions, especially for a particular biome.  相似文献   

3.
A primary objective of the Earth Observing System (EOS) is to develop and validate algorithms to estimate leaf area index (L), fraction of absorbed photosynthetically active radiation (fAPAR), and net primary production (NPP) from remotely sensed products. These three products are important because they relate to or are components of the metabolism of the biosphere and can be determined for terrestrial ecosystems from satellite-borne sensors. The importance of these products in the EOS program necessitates the need to use standard methods to obtain accurate ground truth estimates of L, fAPAR, and NPP that are correlated to satellite-derived estimates. The objective of this article is to review direct and indirect methods used to estimate L, fAPAR, and NPP in terrestrial ecosystems. Direct estimates of L, biomass, and NPP can be obtained by harvesting individual plants, developing allometric equations, and applying these equations to all individuals in the stand. Using non-site-specific allometric equations to estimate L and foliage production can cause large errors because carbon allocation to foliage is influenced by numerous environmental and ecological factors. All of the optical instruments that indirectly estimate L actually estimate “effective” leaf area index (LE) and underestimate L when foliage in the canopy is nonrandomly distributed (i.e., clumped). We discuss several methods, ranging from simple to complex in terms of data needs, that can be used to correct estimates of L when foliage is clumped. Direct estimates of above-ground and below-ground net primary production (NPPA and NPPB, respectively) are laborious, expensive and can only be carried out for small plots, yet there is a great need to obtain global estimates of NPP. Process models, driven by remotely sensed input parameters, are useful tools to examine the influence of global change on the metabolism of terrestrial ecosystems, but an incomplete understanding of carbon allocation continues to hamper development of more accurate NPP models. We summarize carbon allocation patterns for major terrestrial biomes and discuss emerging allocation patterns that can be incorporated into global NPP models. One common process model, light use efficiency or epsilon model, uses remotely sensed fAPAR, light use efficiency (LUE) and carbon allocation coefficients, and other meteorological data to estimates NPP. Such models require reliable estimates of LUE. We summarize the literature and provide LUE coefficients for the major biomes, being careful to correct for inconsistencies in radiation, dry matter and carbon allocation units.  相似文献   

4.
Global demands for biomass and arable lands are expected to double in the next 35 years. Scarcity of water resources in arid and semi-arid areas poses a serious threat to their agricultural productivity and hence their food security. In this study, we examine whether crop yields can be predicted from remotely sensed vegetation indices and remotely sensed estimates of primary productivity. Spatial relationships between remotely sensed enhanced vegetation index (EVI), net photosynthesis (PNet), and gross and net primary production (GPP and NPP, respectively) in irrigated semi-arid and arid agro-ecosystems since the beginning of the century are analysed. The conflict-affected country of Syria is selected as the case study. Relationships between EVI and crop yield are investigated in an effort to enhance food production estimates in affected areas outside governmental jurisdictions. Estimates of NPP derived from reported irrigated agriculture crop data in a semi-arid and an arid zone are compared to remotely sensed NPP in a geospatial environment. Results show that winter crop yields are correlated with spring GPP in semi-arid zones of the study area (R2 = 0.85). Summer crop yield can be predicted from either cumulative summer EVI (R2 = 0.77) or PNet in most zones. Where fully irrigated fields are surrounded by hyper-arid landscape, summer PNet was negative in all instances and EVI was inversely correlated with yield. NPP from crops was much higher (290 gC m?2 year?1) in those regions than MOD17 NPP (70 gC m–2), where 1.0 g of carbon is equivalent to 2.2 g of oven-dry organic matter (= 45% carbon by weight). The gap was less in semi-arid zones (2–39% difference). Overall crop-derived NPP for the period 2000–2013 was 322 versus 300 gC m–2 for that remotely sensed within the cropped zones of the political units. The results of this study are crucial to derive accurate estimates of irrigated agriculture productivity and to study the effect of the latter on net ecosystem carbon storage.  相似文献   

5.
This paper describes a method for integrating leaf area index (LAI) derived from remote sensing data with an ecosystem model for accurate estimation of net primary productivity (NPP). The ecosystem model used in this study was Sim-CYCLE, with which LAI retrieved from the data acquired by MODIS sensor (MODIS-LAI) was integrated. Global annual NPP was estimated as 59.6 Gt C year−1 by MOD-Sim-CYCLE (Sim-CYCLE after integration of MODIS-LAI), whereas it was 62.7 Gt C year−1 in case of Sim-CYCLE for the year 2001. Both models predicted highest NPP around the equator with another smaller peak occurring around 60°N. These two regions represented the tropical and boreal forests biomes, respectively. The NPP estimated by MOD-Sim-CYCLE exceeded the NPP estimated by Sim-CYCLE in these two regions. Other than the tropical and boreal forests biomes, NPP values estimated by the MOD-Sim-CYCLE were typically lower than Sim-CYCLE across the latitudes. Validations of results in Australia and USA showed that MOD-Sim-CYCLE estimated NPP more accurately than Sim-CYCLE. Our results demonstrate the utility of combining satellite-observation with an ecosystem process model to achieve improved accuracy in estimates and monitoring global net primary productivity.  相似文献   

6.
In this study, we assessed the accuracy of the MODIS (Moderate Resolution Imaging Spectroradiometer) GPP (gross primary productivity) Collections 4.5, 4.8 and 5 along with Leaf Area Index (LAI), fraction of absorbed Photosynthetically Active Radiation (fPAR), light use efficiency (LUE) and meteorological variables that are used to estimate GPP for a northern Australian savanna site. Results of this study indicated that the MODIS products captured the seasonal variation in GPP, LAI and fPAR well. Using the index of agreement (IOA), it was found that Collections 4.5 and 4.8 (IOA 0.89 respectively) agreed reasonably well with flux tower measurements between 2001 and 2006. It was also found that MODIS Collection 4.5 predicted the dry season GPP well (Relative Predictive Error (RPE) 4.17%, IOA 0.72 and Root Mean Square Error (RMSE) of 1.05 g C m− 2 day− 1), whilst Collection 4.8 performed better in capturing wet season dynamics (RPE 1.11%, IOA 0.80 and RMSE of 0.91 g C m− 2 day− 1). Although the wet season magnitude of GPP was predicted well by Collection 4.8, an examination of the inputs to the GPP algorithm revealed that MODIS fPAR was too high, but this was compensated by PAR and LUE that was too low. Although LAI and fPAR estimated by Collection 5 were more accurate, GPP for this Collection resulted in a much lower value (RPE 25%) due to errors in other factors. Recalculation of MODIS GPP using site specific input parameters indicated that MODIS fPAR was the main reason for the differences between MODIS and tower derived GPP followed by LUE and meteorological inputs. GPP calculated using all site specific values agreed very well with tower data on an annual basis (IOA 0.94, RPE 6.06% and RMSE 0.83 g C m− 2 day− 1) but the early initiation of the growing season calculated by the MODIS algorithm was improved when the vapor pressure deficit (VPD) function was replaced with a soil water deficit function. The results of this study however, reinforce previous findings in water limited regions, like Australia, and incorporation of soil moisture in a LUE model is needed to accurately estimate the productivity.  相似文献   

7.
This paper presents a physically-based approach for estimating critical variables describing land surface vegetation canopies, relying on remotely sensed data that can be acquired from operational satellite sensors. The REGularized canopy reFLECtance (REGFLEC) modeling tool couples leaf optics (PROSPECT), canopy reflectance (ACRM), and atmospheric radiative transfer (6SV1) model components, facilitating the direct use of at-sensor radiances in green, red and near-infrared wavelengths for the inverse retrieval of leaf chlorophyll content (Cab) and total one-sided leaf area per unit ground area (LAI). The inversion of the canopy reflectance model is constrained by assuming limited variability of leaf structure, vegetation clumping, and leaf inclination angle within a given crop field and by exploiting the added radiometric information content of pixels belonging to the same field. A look-up-table with a suite of pre-computed spectral reflectance relationships, each a function of canopy characteristics, soil background effects and external conditions, is accessed for fast pixel-wise biophysical parameter retrievals. Using 1 m resolution aircraft and 10 m resolution SPOT-5 imagery, REGFLEC effectuated robust biophysical parameter retrievals for a corn field characterized by a wide range in leaf chlorophyll levels and intermixed green and senescent leaf material. Validation against in-situ observations yielded relative root-mean-square deviations (RMSD) on the order of 10% for the 1 m resolution LAI (RMSD = 0.25) and Cab (RMSD = 4.4 μg cm− 2) estimates, due in part to an efficient correction for background influences. LAI and Cab retrieval accuracies at the SPOT 10 m resolution were characterized by relative RMSDs of 13% (0.3) and 17% (7.1 μg cm− 2), respectively, and the overall intra-field pattern in LAI and Cab was well established at this resolution. The developed method has utility in agricultural fields characterized by widely varying distributions of model variables and holds promise as a valuable operational tool for precision crop management. Work is currently in progress to extend REGFLEC to regional scales.  相似文献   

8.
The MODIS (Moderate Resolution Imaging Spectroradiometer) primary productivity products are evaluated against observed Above-ground Net Primary Production (AGNPP) in the semi-arid Senegal 2001. MODIS net primary productivity (NPP) modelling is a light use efficiency (LUE) based approach incorporating constraints on vegetation productivity arising from simulated radiation, water demand and temperature data from NASA's Data Assimilation Office (DAO). Annually integrated MODIS PSN (MOD17A2 net photosynthesis, Collection 4) explains more of the observed biomass variation (r2 = 0.77) than MODIS fAPAR (fraction Absorbed Photosynthetically Active Radiation, Collection 4) (r2 = 0.72), indicating the effect of including the canopy stress scalar (εs) based on DAO data combined with modelled maintenance respiration costs (of leaf and fine roots). Annual MODIS NPP (MOD17A3, Collection 4 (C4) and Collection 4.5 (C4.5)) including growth respiration and live wood maintenance respiration costs and modified DAO input (C4.5) however increases the residual unexplained observed AGNPP variance (C4 NPP; r2 = 0.49) (C4.5 NPP; r2 = 0.37). The overall quality of the annual NPP MODIS C4 and C4.5 products are moderate for the semi-arid Senegal because of the annual respiration cost modelling and a change in C4.5 biome-specific parameters stored in a Biome Properties Look-Up Table (BPLUT) is the main contributor to the observed discrepancy between C4 and C4.5 NPP. The dynamic range of the values of all MOD17 products was too low when compared to observed AGNPP. An estimate of canopy water stress (SIWSI; Shortwave Infrared Water Stress Index) derived from MODIS channels 2 and 6 and photosynthetically active radiation (PAR) irradiance derived from geostationary METEOSAT data were tested for primary production modelling using a stepwise linear regression analysis. PAR irradiance was combined with MODIS fAPAR into APAR (Absorbed Photosynthetically Active Radiation) explaining 79% of the observed AGNPP variation. Introducing SIWSI significantly increased the explained variance of observed AGNPP (r2 = 0.89). MODIS-derived percentage tree cover was tested as a predictor based on the hypothesis that tree cover provides information on differences in respiratory costs between trees and grasses thereby accounting for variations in the LUE conversion efficiency ε. No significant reduction in residual unexplained AGNPP variance was found. Earth observation based derivation of PAR and canopy water stress from SIWSI suggest potential improvements to primary production models in semi-arid biomes that can be implemented in general NPP modelling LUE methodology.  相似文献   

9.
We present the first quantitative representation of the intensity of Yellowstone National Park's surficial geothermal activity mapped continuously in space. A radiative thermal anomaly was remotely sensed throughout a 19,682-km2 landscape covering Yellowstone National Park in the northern Rocky Mountains, USA. The anomaly is the residual terrestrial emittance measured using the Landsat Enhanced Thematic Mapper after accounting for elevation and solar effects, and was hypothesized to be an estimator of a lower bound for geothermal heat flux (GHF). Continuous variations in the anomaly were measured ranging from 0 W m− 2 up to a maximum heat flux of at least 94 W m− 2 (at the 28.5 m pixel scale). An independent method was developed for measuring GHF at smaller scales, based on inversion of a snowpack simulation model, combined with field mapping of snow-free perimeters around selected geothermal features. These perimeters were assumed to be approximately isothermal, with a mean GHF estimated as the minimum heat flux required to ablate the simulated snowpack at that location on the day of field survey. The remotely sensed thermal anomaly correlated well (r = 0.82) with the snowpack-inversion measurements, and supported the hypothesis that the anomaly estimates a lower bound for GHF. These methods enable natural resource managers to identify, quantify and predict changes in heat flux over time in geothermally active areas. They also provide a quantitative basis for understanding the degree to which Yellowstone's famous wildlife herds are actually dependent on geothermal activity.  相似文献   

10.
Spatially distributed estimates of evaporative fraction and actual evapotranspiration are pursued using a simple remote sensing technique based on a remotely sensed vegetation index (NDVI) and diurnal changes in land surface temperature. The technique, known as the triangle method, is improved by utilizing the high temporal resolution of the geostationary MSG-SEVIRI sensor. With 15 min acquisition intervals, the MSG-SEVIRI data allow for a precise estimation of the morning rise in land surface temperature which is a strong proxy for total daytime sensible heat fluxes. Combining the diurnal change in surface temperature, dTs with an interpretation of the triangular shaped dTs − NDVI space allows for a direct estimation of evaporative fraction. The mean daytime energy available for evapotranspiration (Rn − G) is estimated using several remote sensors and limited ancillary data. Finally regional estimates of actual evapotranspiration are made by combining evaporative fraction and available energy estimates. The estimated evaporative fraction (EF) and actual evapotranspiration (ET) for the Senegal River basin have been validated against field observations for the rainy season 2005. The validation results showed low biases and RMSE and R2 of 0.13 [−] and 0.63 for EF and RMSE of 41.45 W m− 2 and R2 of 0.66 for ET.  相似文献   

11.
Improvements to a MODIS global terrestrial evapotranspiration algorithm   总被引:43,自引:0,他引:43  
MODIS global evapotranspiration (ET) products by Mu et al. [Mu, Q., Heinsch, F. A., Zhao, M., Running, S. W. (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111, 519-536. doi: 10.1016/j.rse.2007.04.015] are the first regular 1-km2 land surface ET dataset for the 109.03 Million km2 global vegetated land areas at an 8-day interval. In this study, we have further improved the ET algorithm in Mu et al. (2007a, hereafter called old algorithm) by 1) simplifying the calculation of vegetation cover fraction; 2) calculating ET as the sum of daytime and nighttime components; 3) adding soil heat flux calculation; 4) improving estimates of stomatal conductance, aerodynamic resistance and boundary layer resistance; 5) separating dry canopy surface from the wet; and 6) dividing soil surface into saturated wet surface and moist surface. We compared the improved algorithm with the old one both globally and locally at 46 eddy flux towers. The global annual total ET over the vegetated land surface is 62.8 × 103 km3, agrees very well with other reported estimates of 65.5 × 103 km3 over the terrestrial land surface, which is much higher than 45.8 × 103 km3 estimated with the old algorithm. For ET evaluation at eddy flux towers, the improved algorithm reduces mean absolute bias (MAE) of daily ET from 0.39 mm day−1 to 0.33 mm day−1 driven by tower meteorological data, and from 0.40 mm day−1 to 0.31 mm day−1 driven by GMAO data, a global meteorological reanalysis dataset. MAE values by the improved ET algorithm are 24.6% and 24.1% of the ET measured from towers, within the range (10-30%) of the reported uncertainties in ET measurements, implying an enhanced accuracy of the improved algorithm. Compared to the old algorithm, the improved algorithm increases the skill score with tower-driven ET estimates from 0.50 to 0.55, and from 0.46 to 0.53 with GMAO-driven ET. Based on these results, the improved ET algorithm has a better performance in generating global ET data products, providing critical information on global terrestrial water and energy cycles and environmental changes.  相似文献   

12.
The Sundarbans is the world's largest remaining single block of mangrove forest, covering approximately 1 million ha (~ 10,000 km2) of the Ganges-Brahmaputra delta along the coastal areas of India and Bangladesh. Sea level rise and alteration of water flows of the Himalayan headwaters are among the major disturbances threatening these coastal areas. But very few studies exist on the dynamics or current status of the Sundarbans coastline. We used Landsat images spanning from 1973 to 2010, and an algorithm that we developed, to consistently estimate the spatiotemporal dynamics of erosion and accretion for four different time intervals and the whole study period. Our results show that the direction and extent of erosion and accretion rates varied throughout the different periods. Erosion was the highest in the 1973-1979 interval, with 23.2 km2 year−1 of land loss. However, that rate substantially declined in the following periods, reaching a rate of 7-10 km2 year−1. Accretion showed a rate of 10 km2 year−1 between 1973 and 1989, but substantially declined to ~ 4 km2 year−1 between 1989 and 2010. Accretion rate has declined in the recent years but erosion rate has remained relatively high. As a result the delta front has undergone a net erosion of ~ 170 km2 of coastal land in the 37 years of our study period. These numbers are significantly higher than the previously reported rates and magnitudes of erosion in this area. The methods and maps developed in this study may be helpful in management planning of this vulnerable coastline.  相似文献   

13.
A GIS framework, the Army Remote Moisture System (ARMS), has been developed to link the Land Information System (LIS), a high performance land surface modeling and data assimilation system, with remotely sensed measurements of soil moisture to provide a high resolution estimation of soil moisture in the near surface. ARMS uses available soil (soil texture, porosity, Ksat), land cover (vegetation type, LAI, Fraction of Greenness), and atmospheric data (Albedo) in standardized vector and raster GIS data formats at multiple scales, in addition to climatological forcing data and precipitation. PEST (Parameter EStimation Tool) was integrated into the process to optimize soil porosity and saturated hydraulic conductivity (Ksat), using the remotely sensed measurements, in order to provide a more accurate estimate of the soil moisture. The modeling process is controlled by the user through a graphical interface developed as part of the ArcMap component of ESRI ArcGIS.  相似文献   

14.
We used daily MODerate resolution Imaging Spectroradiometer (MODIS) imagery obtained over a five-year period to analyze the seasonal and inter-annual variability of the fraction of absorbed photosynthetically active radiation (FAPAR) and photosynthetic light use efficiency (LUE) for the Southern Old Aspen (SOA) flux tower site located near the southern limit of the boreal forest in Saskatchewan, Canada. To obtain the spectral characteristics of a standardized land area to compare with tower measurements, we scaled up the nominal 500 m MODIS products to a 2.5 km × 2.5 km area (5 × 5 MODIS 500 m grid cells). We then used the scaled-up MODIS products in a coupled canopy-leaf radiative transfer model, PROSAIL-2, to estimate the fraction of absorbed photosynthetically active radiation (APAR) by the part of the canopy dominated by chlorophyll (FAPARchl) versus that by the whole canopy (FAPARcanopy). Using the additional information provided by flux tower-based measurements of gross ecosystem production (GEP) and incident PAR, we determined 90-minute averages for APAR and LUE (slope of GEP:APAR) for both the physiologically active foliage (APARchl, LUEchl) and for the entire canopy (APARcanopy, LUEcanopy).The flux tower measurements of GEP were strongly related to the MODIS-derived estimates of APARchl (r2 = 0.78) but only weakly related to APARcanopy (r2 = 0.33). Gross LUE between 2001 and 2005 for LUEchl was 0.0241 µmol C µmol− 1 PPFD whereas LUEcanopy was 36% lower. Time series of the 5-year normalized difference vegetation index (NDVI) were used to estimate the average length of the core growing season as days of year 152-259. Inter-annual variability in the core growing season LUEchl (µmol C µmol− 1 PPFD) ranged from 0.0225 in 2003 to 0.0310 in 2004. The five-year time series of LUEchl corresponded well with both the seasonal phase and amplitude of LUE from the tower measurements but this was not the case for LUEcanopy. We conclude that LUEchl derived from MODIS observations could provide a more physiologically realistic parameter than the more commonly used LUEcanopy as an input to large-scale photosynthesis models.  相似文献   

15.
Regional mapping of gross light-use efficiency using MODIS spectral indices   总被引:1,自引:0,他引:1  
Direct estimation of photosynthetic light-use efficiency (LUE) from space would be of significant benefit to LUE-based models which use inputs from remote sensing to estimate terrestrial productivity. The Photochemical Reflectance Index (PRI) has shown promise in tracking LUE at the leaf- to small canopy levels, but its use at regional to global scales still remains a challenge. In this study, we used different formulations of PRI calculated from the MODIS ocean band centered at 531 nm and a set of alternative reference bands at 488, 551, and 678 nm to explore the relationship between PRI and LUE where LUE was measured at eight eddy covariance flux towers located in the boreal forest of Saskatchewan, Canada. The magnitude and variability of LUE was significantly lower at the times when useful MODIS ocean band images were available (i.e. around midday under clear-sky conditions) relative to the rest of the growing season. PRI678 (reference band at 678 nm) showed the strongest relationship (r2 = 0.70) with LUE90a (i.e. 90-minute mean LUE calculated using Absorbed Photosynthetically Active Radiation, APAR), but only when all sites were combined. Overall, the relationships between the MODIS PRIs and LUE90a were always stronger for observations closer to the backscatter direction and there were no significant differences in the strength of the correlations whether LUE was calculated based on incident PAR or on APAR. Predictions of ecosystem photosynthesis at the time of the MODIS overpasses were significantly improved by multiplying either PAR or APAR by MODIS PRI (r2 improved from 0.09 to 0.44 and 0.54 depending on the PRI formulation).We used our PRI-LUE model to create a regional LUE90a map for the three cover types covering 47,500 km2 around the flux sites. The MODIS PRI-derived LUE90a map appeared to capture more realistic spatial heterogeneity of LUE across the landscape compared to a daily LUE map derived using the look-up table in the MODIS GPP (MOD17) algorithm. While our LUE map is only a snapshot of minimum regional LUE90a values, with appropriate gap-filling methods it could be used to improve regional-scale monitoring of GPP. Moreover, the strong relationship between midday and daily LUE on clear days (r2 = 0.93) indicates that instantaneous MODIS observations of LUE90a could be used to estimate daily LUE. Finally, pixel shadow fraction from the 5-Scale geometric-optical model was closely related to both MODIS PRI and tower-derived LUE suggesting that differences in stand leaf area and in diffuse illumination among flux sites play a role in the relationship we observed between LUE and MODIS PRI.  相似文献   

16.
The relative concentrations of different pigments within a leaf have significant physiological and spectral consequences. Photosynthesis, light use efficiency, mass and energy exchange, and stress response are dependent on relationships among an ensemble of pigments. This ensemble also determines the visible characteristics of a leaf, which can be measured remotely and used to quantify leaf biochemistry and structure. But current remote sensing approaches are limited in their ability to resolve individual pigments. This paper focuses on the incorporation of three pigments—chlorophyll a, chlorophyll b, and total carotenoids—into the LIBERTY leaf radiative transfer model to better understand relationships between leaf biochemical, biophysical, and spectral properties.Pinus ponderosa and Pinus jeffreyi needles were collected from three sites in the California Sierra Nevada. Hemispheric single-leaf visible reflectance and transmittance and concentrations of chlorophylls a and b and total carotenoids of fresh needles were measured. These data were input to the enhanced LIBERTY model to estimate optical and biochemical properties of pine needles. The enhanced model successfully estimated reflectance (RMSE = 0.0255, BIAS = 0.00477, RMS%E = 16.7%), had variable success estimating transmittance (RMSE = 0.0442, BIAS = 0.0294, RMS%E = 181%), and generated very good estimates of carotenoid concentrations (RMSE = 2.48 µg/cm2, BIAS = 0.143 µg/cm2, RMS%E = 20.4%), good estimates of chlorophyll a concentrations (RMSE = 10.7 µg/cm2, BIAS = − 0.992 µg/cm2, RMS%E = 21.1%), and fair estimates of chlorophyll b concentrations (RMSE = 7.49 µg/cm2, BIAS = − 2.12 µg/cm2, RMS%E = 43.7%). Overall root mean squared errors of reflectance, transmittance, and pigment concentration estimates were lower for the three-pigment model than for the single-pigment model. The algorithm to estimate three in vivo specific absorption coefficients is robust, although estimated values are distorted by inconsistencies in model biophysics. The capacity to invert the model from single-leaf reflectance and transmittance was added to the model so it could be coupled with vegetation canopy models to estimate canopy biochemistry from remotely sensed data.  相似文献   

17.
Leaf area index (LAI) is a commonly required parameter when modelling land surface fluxes. Satellite based imagers, such as the 300 m full resolution (FR) Medium Spectral Resolution Imaging Spectrometer (MERIS), offer the potential for timely LAI mapping. The availability of multiple MERIS LAI algorithms prompts the need for an evaluation of their performance, especially over a range of land use conditions. Four current methods for deriving LAI from MERIS FR data were compared to estimates from in-situ measurements over a 3 km × 3 km region near Ottawa, Canada. The LAI of deciduous dominant forest stands and corn, soybean and pasture fields was measured in-situ using digital hemispherical photography and processed using the CANEYE software. MERIS LAI estimates were derived using the MERIS Top of Atmosphere (TOA) algorithm, MERIS Top of Canopy (TOC) algorithm, the Canada Centre for Remote Sensing (CCRS) Empirical algorithm and the University of Toronto (UofT) GLOBCARBON algorithm. Results show that TOA and TOC LAI estimates were nearly identical (R2 > 0.98) with underestimation of LAI when it is larger than 4 and overestimation when smaller than 2 over the study region. The UofT and CCRS LAI estimates had root mean square errors over 1.4 units with large (∼ 25%) relative residuals over forests and consistent underestimates over corn fields. Both algorithms were correlated (R2 > 0.8) possibly due to their use of the same spectral bands derived vegetation index for retrieving LAI. LAI time series from TOA, TOC and CCRS algorithms showed smooth growth trajectories however similar errors were found when the values were compared with the in-situ LAI. In summary, none of the MERIS LAI algorithms currently meet performance requirements from the Global Climate Observing System.  相似文献   

18.
Light use efficiency (LUE) algorithms are a potentially effective approach to monitoring global net primary production (NPP) using satellite-borne sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS). However, these algorithms are applied at relatively coarse spatial resolutions (≥1 km), which may subsume significant heterogeneity in vegetation LUE (εn, g MJ−1) and, hence, introduce error. To examine the effects of spatial heterogeneity on a LUE algorithm, imagery from the Advanced Very High Resolution Radiometer (AVHRR) at ≈1-km resolution was used to implement a LUE approach for NPP estimation over a 25-km2 area of corn (Zea mays L.) and soybean (Glycine max Merr.) in central Illinois, USA. Results from several εn formulations were compared with a NPP reference surface based on measured NPPs and a high spatial resolution land cover surface derived from Landsat ETM+. Determination of εn based on measurements of biomass production and monitoring of absorbed photosynthetically active radiation (APAR) revealed that εn of soybean was 68% of that for corn. When a LUE algorithm for estimating NPP was implemented in the study area using the assumption of homogeneous cropland and the εn for corn, the estimate for total biomass production was 126% of that from the NPP reference surface. Because of counteracting errors, total biomass production using the soybean εn was closer (86%) to that from the NPP reference surface. Retention of high spatial resolution land cover to assign εn resulted in a total NPP very similar to the reference NPP because differences in leaf phenology between the crop types were small except early in the growing season. These results suggest several alternative approaches to accounting for land cover heterogeneity in εn when implementing LUE algorithms at coarse resolution.  相似文献   

19.
Evapotranspiration (ET) is a major pathway for water loss from many ecosystems, and its seasonal variation affects soil moisture and net ecosystem CO2 exchange. We developed an algorithm to estimate ET using a semi-empirical Priestley-Taylor (PT) approach, which can be applied at a range of spatial scales. We estimated regional net radiation (Rnet) at monthly time scales using MODerate resolution Imaging Spectroradiometer (MODIS) albedo and land surface temperature. Good agreement was found between satellite-based estimates of monthly Rnet and field-measured Rnet, with a RMSE of less than 30 W m− 2. An adjustable PT coefficient was parameterized as a function of leaf area index and soil moisture based on observations from 27 AmeriFlux eddy covariance sites. The biome specific optimization using tower-based observations performed well, with a RMSE of 17 W m− 2 and a correlation of 0.90 for predicted monthly latent heat. We implemented the approach within the hydrology module of the CASA biogeochemical model, and used it to estimate ET at a 1 km spatial resolution for the conterminous United States (CONUS). The RMSE of modeled ET was reduced to 21.1 mm mon− 1, compared to 27.1 mm mon− 1 in the original CASA model. The monthly ET rates averaged over the Mississippi River basin were similar to those derived using GRACE satellite measurements and river discharge data. ET varied substantially over the CONUS, with annual mean values of 110 ± 76 mm yr− 1 in deserts, 391 ± 176 mm yr− 1 in savannas and grasslands, and 840 ± 234 mm yr− 1 in broadleaf forests. The PT coefficient was the main driver for the spatial variation of ET in arid areas, whereas Rnet controlled ET when mean annual precipitation was higher than approximately 400 mm yr− 1.  相似文献   

20.
A general forest ecosystem model (FOREST-BGC) driven by remotely sensed and meteorological data was used to estimate stem carbon production (SCP) for a forest in mid-Wales. Key inputs to the model were spatial estimates of leaf area index (LAI) and leaf nitrogen concentration (LNC). The red edge position (REP) was determined for data acquired by the Compact Airborne Spectrographic Imager (CASI) sensor. There was a strong linear correlation (r = 0.94) between LAI and the REP and the relationship was used to obtain spatial estimates of LAI. There was no relationship between LNC and the REP and so spatial estimates of LNC were derived indirectly from LAI. Estimates of SCP generated from FOREST-BGC compared favourably with estimates derived from tree cores (RMSE= +/- 0.34 Mg C ha-1 yr-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号