共查询到18条相似文献,搜索用时 58 毫秒
1.
2.
3.
4.
提出了基于LDA(latent Dirichlet allocation)重要主题的多文档自动摘要算法。该算法与已有的基于主题模型的多文档自动摘要算法主要有两点区别:第一,在计算句子主题与文档主题相似度问题上,引入并定义了主题重要性的概念,将LDA模型建立的主题分成重要和非重要主题两类,计算句子权重时重点考虑句子主题和文档重要主题的相似性;第二,该方法同时使用句子的词频、位置等统计特征和LDA特征组成的向量计算句子的权重,既突出了传统的统计特征的显著优势,又结合了LDA模型的主题概念。实验表明,该算法在DUC2002标准数据集上取得了较好的摘要效果。 相似文献
5.
从文档集合的语义结构理解文档集合可以提高多文档摘要的质量。本文通过抽取中文多文档摘要文档集中的主-述-宾三元组结构构建文档语义图,再对语义图中的节点利用编辑距离进行语义聚类,并应用Page-Rank排序算法对语义图进行权重计算后,选取包含权重较高的节点及链接关系的三元组生成文档集合的多文档摘要。在摘要的评测阶段,将基于句子抽取的多文档摘要结果和基于文档语义图生成的多文档摘要分别与由评测员人工生成的摘要进行ROUGE相关度评测,并对利用编辑距离对语义图进行语义聚类前后的结果进行了比较。实验结果表明,基于文档语义图生成的多文档摘要与人工生成的摘要结果重叠度更高,而利用编辑距离对语义图进行聚类则进一步改进了摘要的质量。 相似文献
6.
基于事件抽取的网络新闻多文档自动摘要 总被引:1,自引:0,他引:1
目前,有代表性的自动摘要方法是根据文本片段进行聚类,较传统方法避免了信息冗余,但网络新闻文本中有些文本片段和主题无关,影响了聚类的效果,导致最终生成的摘要不够简洁。为此,该文引入事件抽取技术,提出了一种基于事件抽取的网络新闻多文档自动摘要方法。该方法首先通过二元分类器辨析出文本中的事件和非事件;然后通过聚类将文档原来以段落或句子为单位的物理划分转化为以事件为单位的内容逻辑划分,最后通过主旨事件抽取、排序及润色,生成摘要。实验结果表明,该方法是有效的,显著提高了生成摘要的质量。 相似文献
7.
8.
代码摘要是源代码的自然语言解释,高质量的代码摘要有助于提高开发人员程序理解效率. 近年来,代码自动摘要的研究集中在为方法粒度的代码片段生成摘要. 然而,对于面向对象的语言,例如Java,类才是项目的基本组成单元. 基于上述问题,提出一种基于分层表示和上下文增强的类摘要生成方法HRCE(hierarchical representation and context enhancement),并构建了一个包含358992个$langle $Java类,上下文,摘要$rangle $数据对的类摘要数据集. HRCE使用代码精简策略去除类的非关键代码,从而缩短代码长度. 然后,对类的层次结构,包括类签名、属性和方法分别进行建模,获得类的语义信息和层次结构信息. 此外,从项目中抽取父类的签名及摘要来刻画类在项目中依赖的上下文. 实验表明,基于分层表示和上下文增强的类摘要生成模型能够表征代码的语义和层次结构,并可以从目标类的内部和外部获取信息. HRCE在BLEU,METEOR,ROUGE-L等评估指标上超过了所有基准模型. 相似文献
9.
文本情感摘要任务旨在对带有情感的文本数据进行浓缩、提炼进而产生文本所表达的关于情感意见的摘要。该文主要研究基于多文档的文本情感摘要问题, 重点针对网络上存在同一个产品的多个评论产生相应的摘要。首先,为了进行关于文本情感摘要的研究,该文收集并标注了一个基于产品评论的中文多文档文本情感摘要语料库。其次,该文提出了一种基于情感信息的PageRank算法框架用于实现多文档文本情感摘要,该算法同时考虑了情感和主题相关两方面的信息。实验结果表明,该文采用的方法和已有的方法相比在ROUGE值上有显著提高。 相似文献
10.
代码摘要通过生成源代码片段的简短自然语言描述, 可帮助开发人员理解代码并减少文档工作. 近期, 关于代码摘要的研究工作主要采用深度学习模型, 这些模型中的大多数都在由独立代码摘要对组成的大型数据集上进行训练. 尽管取得了良好的效果, 这些工作普遍忽略了代码片段和摘要的项目级上下文信息, 而开发人员在编写文档时往往高度依赖这些信息. 针对该问题, 研究了一种与开发者行为和代码摘要工具实现更加一致的代码摘要场景——项目级代码摘要, 其中, 创建了用于项目特定代码摘要的数据集, 该数据集包含800k方法摘要对及其生命周期信息, 用于构建特定时刻准确的项目项目上下文; 提出了一种新颖的深度学习方法, 利用高度相关的代码片段及其相应的摘要来表征上下文语义, 并通过迁移学习整合从大规模跨项目数据集中学到的常识. 实验结果表明: 基于项目级上下文的代码摘要模型不仅能够比通用代码摘要模型获得显著的性能提升, 同时, 针对特定项目能够生成更一致的摘要. 相似文献
11.
12.
多文本摘要的目标是对给定的查询和多篇文本(文本集),创建一个简洁明了的摘要,要求该摘要能够表达这些文本的关键内容,同时和给定的查询相关。一个给定的文本集通常包含一些主题,而且每个主题由一类句子来表示,一个优秀的摘要应该要包含那些最重要的主题。如今大部分的方法是建立一个模型来计算句子得分,然后选择得分最高的部分句子来生成摘要。不同于这些方法,我们更加关注文本的主题而不是句子,把如何生成摘要的问题看成一个主题的发现,排序和表示的问题。我们首次引入dominant sets cluster(DSC)来发现主题,然后建立一个模型来对主题的重要性进行评估,最后兼顾代表性和无重复性来从各个主题中选择句子组成摘要。我们在DUC2005、2006、2007三年的标准数据集上进行了实验,最后的实验结果证明了该方法的有效性。 相似文献
13.
基于主题概念抽取的多文档文摘方法 总被引:3,自引:2,他引:1
提出一种应用于多文档文摘的有效概念抽取方法。利用WordNet中词语的同义和上下义关系进行语义消歧和概念树构造,通过概念优化算法进行主题概念抽取,建立概念向量空间模型并通过最大边缘相关方法得到文摘句。采用语义概念统计来替代传统的词形统计,能更准确地提取文档中的重要信息。DUC2005的评测结果表明,该方法比传统方法能获得更好的效果。 相似文献
14.
句子排序是多文档摘要系统中重要的任务之一,排序的质量将直接影响摘要的连贯性与可读性。当前基于时间的句子排序算法过度依赖文档的时间标签,通用性较差;基于大型语料库的句子排序算法训练过于复杂,排序质量不高。对此,提出一种基于主题文档集合的排序算法,其目的是解决不含时间标签的摘要句子排序问题。算法利用条件熵和上下文邻近度算法从源文档集合中学习句子对的关联程度与承接关系,并利用最大权值删减排序算法形成最终的排序结果。本方法只依赖于摘要句子的源文档集合,具有较强的领域通用性。实验结果表明,在现有的句子排序策略中,此方法具有较大提高。 相似文献
15.
带有时间标志的演化式摘要是近年来提出的自然语言处理任务,其本质是多文档自动文摘,它的研究对象是互联网上连续报道的热点新闻文档。针对互联网新闻事件报道的动态演化、动态关联和信息重复等特点,该文提出了一种基于局部—全局主题关系的演化式摘要方法,该方法将新闻事件划分为多个不同的子主题,在考虑时间演化的基础上同时考虑子主题之间的主题演化,最后将新闻标题作为摘要输出。实验结果表明,该方法是有效的,并且在以新闻标题作为输入输出时,和当前主流的多文档摘要和演化摘要方法相比,在Rouge评价指标上有显著提高。 相似文献
16.
文本情感摘要任务旨在对带有情感的文本数据进行浓缩、提炼进而产生文本所表达的关于情感意见的摘要,用以帮助用户更好地阅读、理解情感文本的内容。该文主要研究多文档的文本情感摘要问题,重点针对网络上存在的同一个产品的多个评论进行摘要抽取。在情感文本中,情感相关性是一个重要的特点,该文将充分考虑情感信息对文本情感摘要的重要影响。同时,对于评论语料,质量高的评论或者说可信度高的评论可以帮助用户更好的了解评论中所评价的对象。因此,该文将充分考虑评论质量对文本情感摘要的影响。并且为了进行关于文本情感摘要的研究,该文收集并标注了一个基于产品评论的英文多文档文本情感摘要语料库。实验证明,情感信息和评论质量能够帮助多文档文本情感摘要,提高摘要效果。 相似文献
17.
多文档文摘中句子优化选择方法研究 总被引:2,自引:0,他引:2
在多文档文摘子主题划分的基础上,提出了一种在子主题之间对文摘句优化选择的方法.首先在句子相似度计算的基础上,形成多文档集合的子主题,通过对各子主题打分,确定子主题的抽取顺序.以文摘中有效词的覆盖率作为优化指标,在各个子主题中选择文摘句.从减少子主题之间及子主题内部的信息的冗余性两个角度选择文摘句,使文摘的信息覆盖率得到很大提高.实验表明,生成的文摘是令人满意的. 相似文献
18.
多文档文摘是将同一主题下的多个文本描述的主要的信息按压缩比提炼为一个文本的自然语言处理技术,它可以从全局的角度对网络信息进行挖掘。在面对飞速增长的网络资源时,如何准确、高效地从海量数据源内进行自动文摘处理,是多文档自动文摘面临的主要难题之一。MapReduce是Google提出的一种分布式并行计算方法,它可以部署在任意一个普通商用计算机组成的集群上,能够有效地协调集群内各计算机的计算任务,充分利用计算机集群的处理能力,能够对海量数据进行有效的分析处理。提出了一个有效的实验模型,将MapReduce分布式并行框架应用在多文档自动文摘技术中。实验结果表明,MapReduce在保证文摘质量的前提下,能够有效地提高文摘抽取过程的处理性能。 相似文献