共查询到19条相似文献,搜索用时 61 毫秒
1.
针对织物缺陷检测时疵点种类繁多且传统人工检测方法漏检率高的问题,提出了一种基于卷积神经网络的织物表面缺陷分类方法。因卷积神经网络(CNN)训练时参数多、样本量大,且极易陷入过拟合,利用微调卷积神经网络模型Alexnet对织物疵点图像进行特征提取,初始化采用原网络的参数而非随机初始化参数;再针对特定目标下的训练样本对网络参数进行微调;最后利用softmax回归算法进行预测分类。分别用三种方法和两种织物进行测试,结果表明:针对特定目标微调后的Alexnet网络,在两类织物测试中均能达到95%以上的分类准确率。 相似文献
2.
3.
为提高仅包含少量训练样本的图像识别准确率,利用卷积神经网络作为图像的特征提取器,提出一种基于卷积神经网络的小样本图像识别方法。在原始小数据集中引入数据增强变换,扩充数据样本的范围;在此基础上将大规模数据集上的源预训练模型在目标小数据集上进行迁移训练,提取除最后全连接层之外的模型权重和图像特征;结合源预训练模型提取的特征,采用层冻结方法,微调目标小规模数据集上的卷积模型,得到最终分类识别结果。实验结果表明,该方法在小规模图像数据集的识别问题中具有较高的准确率和鲁棒性。 相似文献
4.
心血管疾病的发病率、死亡率都很高,心电图作为心血管疾病患者必要的辅助检查项目,在心血管疾病诊断上具有重要作用。主要研究利用ECG信号具有大数据特征的优势,通过人工智能方法建立模型对ECG信号进行分析,可以抽象输入信号的深层次特征,利用深度神经网络提取信号鲁棒性特征的能力,最终通过深度学习理论技术对心拍、心律失常类信号进行有效的分类与识别,探索了深度学习技术在由心肌缺血引发的心血管类疾病识别中的研究与应用。 相似文献
5.
6.
钢设备质量检测环节中,首先需要进行外部检测,查看设备表面是否存在裂缝等异常.针对以上场景,提出了一种基于深度学习的钢表面缺陷检测方法,以卷积神经网络(CNN)作为识别算法,构建了缺陷检测规则.实验结果表明,该方法能有效提高花卉识别的准确性. 相似文献
7.
为实现计算机辅助系统精准、快速地检测宫颈异常细胞,提出一种基于卷积神经网络的宫颈细胞自动分类方法.首先复制预训练网络结构及参数来初始化分类网络,将宫颈细胞图像分批次传入网络;然后采用Softmax函数将网络输出数据归一化为各标签对应的概率值,并使用交叉熵作为损失函数;最后改进网络结构加入对数据的批归一化处理,通过反向传播算法优化参数使损失函数最小化,最终选择训练所得最优网络.使用5折交叉验证法在Herlev数据集上的实验结果表明,对比Herlev常用基准方法,该方法的特异性、调和平均数和准确率分别提高了19.46%, 10.71%和5.09%. 相似文献
8.
针对被强噪声污染的小样本水表读数数据集,提出一种基于卷积神经网络(CNN)迁移学习的字符识别方法.在TensorFlow框架下搭建卷积神经网络,将批归一化应用到网络模型的构建中,并对目标函数进行优化来提高网络的性能.通过迁移学习的方法提高小样本数据集的识别率,采用大样本数据集对卷积神经网络的结构参数进行预训练后,共享浅... 相似文献
9.
10.
为了提取有效的恶意代码特征,提高恶意代码家族多分类的准确率,提出一种改进模型.该模型将恶意代码的特征映射为灰度图,使用改进的恶意样本图像缩放算法进行图像的规范化处理,基于VGG模型构建一维卷积神经网络分类模型ID-CNN-IMIR.实验结果表明,恶意代码特征的提取和处理提升了分类效果;对比经典的机器学习算法、二维卷积神经网络、其他基于深度学习的恶意代码分类模型,ID-CNN-IMIR分类准确率是最好的,达到98.94%. 相似文献
11.
随着最近深度学习技术的蓬勃发展,深度神经网络(DNN)在大规模的图像分类与识别任务中取得了突破性的进展,但其在解决小样本学习问题时仍面临巨大挑战.小样本学习(FSL)是指在少量有监督样本的情况下学习一个能解决实际问题的模型,在深度学习领域具有重要意义.这促使该系统梳理了已有的DNN下的小样本学习工作,根据它们在解决小样... 相似文献
12.
深度卷积神经网络在处理自然图片时取得了非常好的效果,但鲜有针对工业应用领域的细分研究。本文探讨了深度学习模型在工业产品表面缺陷检测领域的应用。以Cp工业产品缺陷检测为着眼点,在设计检测方案时应用深度学习模型并辅助图像处理等相关技术,通过实验分析得到最佳应用模型。创新点在于提出了数据集信息密度这一概念,通过在多个数据集上... 相似文献
13.
织物缺陷在线检测是纺织行业面临的重大难题,针对当前织物缺陷检测中存在的误检率高、漏检率高、实时性不强等问题,提出了一种基于深度学习的织物缺陷在线检测算法。首先基于GoogLeNet网络架构,并参考其他分类模型的经典算法,搭建出适用于实际生产环境的织物缺陷分类模型;其次利用质检人员标注的不同种类织物图片组建织物缺陷数据库,并用该数据库对织物缺陷分类模型进行训练;最后对高清相机在织物验布机上采集的图片进行分割,并将分割后的小图以批量的方式传入训练好的分类模型,实现对每张小图的分类,以此来检测缺陷并确定其位置。对该模型在织物缺陷数据库上进行了验证。实验结果表明:织物缺陷分类模型平均每张小图的测试时间为 0.37 ms ,平均测试时间比GoogLeNet减少了67%,比ResNet-50减少了93%;同时模型在测试集上的正确率达到 99.99%。说明其准确率与实时性均满足实际工业需求。 相似文献
14.
人脸妆容迁移是指将参考妆容迁移到素颜人脸上,在保持面部特征不变的同时尽可能展现参考妆容的风格的一种任务。为了进一步实现人脸妆容自动迁移技术,避免现有妆容迁移方法没有充分考虑人与人之间的五官差异而导致提取的人脸信息不足等问题,提出了一种基于深度卷积神经网络的人脸妆容迁移算法。该算法首先自动定位素颜人脸和参考妆容的五官,提取重要部位的特征信息。然后通过妆容传递网络和损失函数,经过深度卷积神经网络自主训练,最终实现了参考妆容向素颜人脸的自动迁移。仿真实验结果表明,与目前的主流算法进行对比,该算法耗时更短、运算性能更具优势,同时在不改变原图五官细节的基础上,妆容迁移效果更为自然。 相似文献
15.
针对人工和传统自动化算法检测发动机零件表面缺陷中准确率和效率低下,无法满足智能制造需求问题,提出了一种基于深度学习的检测算法.以Faster R-CNN深度学习算法为算法框架,引入聚类理论来确定anchor方案,通过对比k-meansII和CURE聚类算法生成anchor对检测结果的影响,提出了基于聚类生成anchor方案的Faster R-CNN的零件表面缺陷检测算法,并引入多级ROI池化层结构,减少ROI池化过程中取整带来的偏差,实现高效并准确检测零件表面缺陷的目的.通过设计缺陷图像数据采集方案,建立了3种缺陷零件数据集,并验证了算法的性能.实验结果表明,该算法将缺陷检测的均值平均精度mAP从原算法的54.7%提高到97.9%,检测速度最快达到4.9 fps,能够满足智能制造的生产需求. 相似文献
16.
针对当前金属表面缺陷实时检测中存在的缺陷检测精度不高以及难以定位等问题,提出一种基于级联孪生密集网络的表面缺陷检测方法SCSEG-Net.该方法通过加入空洞空间金字塔池化模块结构,获取具有不同采样率的特征图捕获多尺度信息;同时,为了增强分类准确度,在训练时融合浅层卷积获取的低层纹理和边界等特征和深度卷积获取的复杂高层特征信息,通过级联网络更好地优化训练参数.SCSEG-Net可以将缺陷图像转换为像素级预测蒙版,并快速地获取真实的缺陷类别.在行业标准钢铁表面缺陷数据集上对SCSEG-Net方法进行训练、评估及验证,结果表明,对比同类方法,该方法能更精确地分割出钢铁表面缺陷的轮廓并完成分类,F1值为97.8%,召回率为98.81%. 相似文献
17.
针对焊缝X射线图像缺陷识别传统方法的计算量大与准确度差的问题,提出了基于MobileNet的识别方法。首先对样本图像进行预处理和数量上的增强;然后引入MobileNet结构以解决传统深度卷积神经网络中对计算资源要求高的问题,引入残差结构与ELU激活函数以解决原始MobileNet网络中出现的退化问题与权重偏置更新失效的问题,在训练时应用迁移学习方法,解决小数据集容易过拟合与训练效率低的问题;最后,针对相同数据集,与改进前的网络、AlexNet网络和VGG-16网络进行对比,表明该文方法具备更优的识别准确率和相比传统网络拥有更小的计算量,相比传统网络的缺陷识别方法拥有更大的应用范围。 相似文献
18.
19.
组织病理学是临床上肿瘤诊断的金标准,直接关系到治疗的开展与预后的评估。来自临床的需求为组织病理诊断提出了质量与效率两个方面的挑战。组织病理诊断涉及大量繁重的病理切片判读任务,高度依赖医生的经验,但病理医生的培养周期长,人才储备缺口巨大,病理科室普遍超负荷工作。近年来出现的基于深度学习的组织病理辅助诊断方法可以帮助医生提高诊断工作的精度与速度,缓解病理诊断资源不足的问题,引起了研究人员的广泛关注。本文初步综述深度学习方法在组织病理学中的相关研究工作。介绍了组织病理诊断的医学背景,整理了组织病理学领域的主要数据集,重点介绍倍受关注的乳腺癌、淋巴结转移癌、结肠癌的病理数据及其分析任务。本文归纳了数据的存储与处理、模型的设计与优化以及小样本与弱标注学习这3项需要解决的技术问题。围绕这些问题,本文介绍了包括数据存储、数据预处理、分类模型、分割模型、迁移学习和多示例学习等相关研究工作。最后总结了面向组织病理学诊断的深度学习方法研究现状,并指出当下研究工作可能的改进方向。 相似文献