共查询到10条相似文献,搜索用时 69 毫秒
1.
Elementary and junior high school buildings in Taiwan are designed to serve not only as places of education but also as temporary shelters in the aftermath of major earthquakes. Effective evaluation of the seismic resistance of school buildings is a critical issue that deserves further investigation. The National Center for Research on Earthquake Engineering (in Taiwan) currently employs performance-target ground acceleration (AP) as the index to evaluate school structure compliance with seismic resistance requirements. However, computational processes are complicated, time consuming, and require the input of many experts. To address this problem, this paper developed an evolutionary support vector machine inference system (ESIS) that integrated two AI techniques, namely, the support vector machine (SVM) and fast messy genetic algorithm (fmGA). Based on training results, the developed system can predict the AP of a school building in a significantly shorter time base, thus increasing evaluation efficiency significantly. The validity of ESIS was tested using the 10-Fold Cross-Validation method. Another aim of this paper is to retain and apply expert knowledge and relevant experience to the solution of similar problems in the future. 相似文献
2.
3.
《Expert systems with applications》2014,41(8):3955-3964
Hybrid system is a potential tool to deal with construction engineering and management problems. This study proposes an optimized hybrid artificial intelligence model to integrate a fast messy genetic algorithm (fmGA) with a support vector machine (SVM). The fmGA-based SVM (GASVM) is used for early prediction of dispute propensity in the initial phase of public–private partnership projects. Particularly, the SVM mainly provides learning and curve fitting while the fmGA optimizes SVM parameters. Measures in term of accuracy, precision, sensitivity, specificity, and area under the curve and synthesis index are used for performance evaluation of proposed hybrid intelligence classification model. Experimental comparisons indicate that GASVM achieves better cross-fold prediction accuracy compared to other baseline models (i.e., CART, CHAID, QUEST, and C5.0) and previous works. The forecasting results provide the proactive-warning and decision-support information needed to manage potential disputes. 相似文献
4.
Towards improving fuzzy clustering using support vector machine: Application to gene expression data
Anirban Mukhopadhyay Author Vitae Ujjwal Maulik Author Vitae 《Pattern recognition》2009,42(11):2744-2763
Recent advancement in microarray technology permits monitoring of the expression levels of a large set of genes across a number of time points simultaneously. For extracting knowledge from such huge volume of microarray gene expression data, computational analysis is required. Clustering is one of the important data mining tools for analyzing such microarray data to group similar genes into clusters. Researchers have proposed a number of clustering algorithms in this purpose. In this article, an attempt has been made in order to improve the performance of fuzzy clustering by combining it with support vector machine (SVM) classifier. A recently proposed real-coded variable string length genetic algorithm based clustering technique and an iterated version of fuzzy C-means clustering have been utilized in this purpose. The performance of the proposed clustering scheme has been compared with that of some well-known existing clustering algorithms and their SVM boosted versions for one simulated and six real life gene expression data sets. Statistical significance test based on analysis of variance (ANOVA) followed by posteriori Tukey-Kramer multiple comparison test has been conducted to establish the statistical significance of the superior performance of the proposed clustering scheme. Moreover biological significance of the clustering solutions have been established. 相似文献
5.
Consumer preferences regarding product design are often affected by a large variety of form features. Traditionally, the quality of product form design depended heavily on designers’ intuitions and did not always prove to be successful in the marketplace. In this study, to help product designers develop appealing products in a more effective manner, an approach based on fuzzy support vector machines (fuzzy SVM) is proposed. This constructs a classification model of product form design based on consumer preferences. The one-versus-one (OVO) method is adopted to handle a multiclass problem by breaking it into various two-class problems. Product samples were collected and their form features were systematically examined. To formulate a classification problem, each product sample was assigned a class label and a fuzzy membership that corresponded to this label. The OVO fuzzy SVM model was constructed using collected product samples. The optimal training parameter set for the model was determined by a two-step cross-validation. A case study of mobile phone design is given to demonstrate the effectiveness of the proposed methodology. The performance of fuzzy SVM is also compared with SVM. The results of the experiment show that fuzzy SVM performed better than SVM. 相似文献
6.
A parsimony fuzzy rule-based classifier using axiomatic fuzzy set theory and support vector machines
This paper proposes a classification method that is based on easily interpretable fuzzy rules and fully capitalizes on the two key technologies, namely pruning the outliers in the training data by SVMs (support vector machines), i.e., eliminating the influence of outliers on the learning process; finding a fuzzy set with sound linguistic interpretation to describe each class based on AFS (axiomatic fuzzy set) theory. Compared with other fuzzy rule-based methods, the proposed models are usually more compact and easily understandable for the users since each class is described by much fewer rules. The proposed method also comes with two other advantages, namely, each rule obtained from the proposed algorithm is simply a conjunction of some linguistic terms, there are no parameters that are required to be tuned. The proposed classification method is compared with the previously published fuzzy rule-based classifiers by testing them on 16 UCI data sets. The results show that the fuzzy rule-based classifier presented in this paper, offers a compact, understandable and accurate classification scheme. A balance is achieved between the interpretability and the accuracy. 相似文献
7.
As a machine-learning tool, support vector machines (SVMs) have been gaining popularity due to their promising performance. However, the generalization abilities of SVMs often rely on whether the selected kernel functions are suitable for real classification data. To lessen the sensitivity of different kernels in SVMs classification and improve SVMs generalization ability, this paper proposes a fuzzy fusion model to combine multiple SVMs classifiers. To better handle uncertainties existing in real classification data and in the membership functions (MFs) in the traditional type-1 fuzzy logic system (FLS), we apply interval type-2 fuzzy sets to construct a type-2 SVMs fusion FLS. This type-2 fusion architecture takes considerations of the classification results from individual SVMs classifiers and generates the combined classification decision as the output. Besides the distances of data examples to SVMs hyperplanes, the type-2 fuzzy SVMs fusion system also considers the accuracy information of individual SVMs. Our experiments show that the type-2 based SVM fusion classifiers outperform individual SVM classifiers in most cases. The experiments also show that the type-2 fuzzy logic-based SVMs fusion model is better than the type-1 based SVM fusion model in general. 相似文献
8.
Support vector machines with genetic fuzzy feature transformation for biomedical data classification
In this paper, we present a genetic fuzzy feature transformation method for support vector machines (SVMs) to do more accurate data classification. Given data are first transformed into a high feature space by a fuzzy system, and then SVMs are used to map data into a higher feature space and then construct the hyperplane to make a final decision. Genetic algorithms are used to optimize the fuzzy feature transformation so as to use the newly generated features to help SVMs do more accurate biomedical data classification under uncertainty. The experimental results show that the new genetic fuzzy SVMs have better generalization abilities than the traditional SVMs in terms of prediction accuracy. 相似文献
9.
10.
In cancer classification based on gene expression data, it would be desirable to defer a decision for observations that are difficult to classify. For instance, an observation for which the conditional probability of being cancer is around 1/2 would preferably require more advanced tests rather than an immediate decision. This motivates the use of a classifier with a reject option that reports a warning in cases of observations that are difficult to classify. In this paper, we consider a problem of gene selection with a reject option. Typically, gene expression data comprise of expression levels of several thousands of candidate genes. In such cases, an effective gene selection procedure is necessary to provide a better understanding of the underlying biological system that generates data and to improve prediction performance. We propose a machine learning approach in which we apply the l1 penalty to the SVM with a reject option. This method is referred to as the l1 SVM with a reject option. We develop a novel optimization algorithm for this SVM, which is sufficiently fast and stable to analyze gene expression data. The proposed algorithm realizes an entire solution path with respect to the regularization parameter. Results of numerical studies show that, in comparison with the standard l1 SVM, the proposed method efficiently reduces prediction errors without hampering gene selectivity. 相似文献