首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The latitudinal tree cover gradient is an important characteristic of the tundra–taiga transition zone stretching around the northern hemisphere. Accurately mapped continuous tree cover fields would enable the depiction of forest extent over this ecotone, which is sensitive to climate change, natural disturbances and human activities. The objective of this study was to assess the explanatory power of multispectral, -temporal and -angular MODIS data to estimate tree cover at the regional scale in northernmost Finland. The standard MODIS BRDF/Albedo (MOD43B) data products at approximately 1 km resolution were used. The tree cover was estimated using generalized linear models (GLM), which were calibrated and evaluated by high resolution biotope inventory data. The benefit of coupling the multispectral, -temporal and -angular variables was assessed by variation partitioning. The predicted tree cover fields were also used for the forest–non-forest classification over a larger region and compared with the forest extent of Finnish CORINE land cover 2000 data set. The results show that multitemporal and -angular variables can increase the accuracy of the tree cover estimates and mapping of the forest extent in comparison to the peak of the growing season nadir-view multispectral data. The season of the data acquisition also affect the model performance, the late-spring and early-summer data being superior to mid- and late-summer data. Although the pure effect of the multiangular variables i.e. the parameters of the MODIS BRDF model and selected multiangular indices were relatively small in the models, the inclusion of these data increased the accuracy of the tree cover estimates in the mires in comparison to the peak of the growing season nadir-view multispectral data and multitemporal variables.  相似文献   

2.
The leaf area index (LAI) product from the Moderate Resolution Imaging Spectroradiometer (MODIS) is important for monitoring and modelling global change and terrestrial dynamics at many scales. The algorithm relies on spectral reflectances and a six biome land cover classification. Evaluation of the specific behaviour and performance of the product for regions of the globe such as Australia are needed to assist with product refinement and validation. We made an assessment of Collection 4 of the MODIS LAI product using four approaches: (a) assessment against a continental scale Structural Classification of Australian Vegetation (SCAV); (b) assessment against a continental scale land use classification (LUC); (c) assessment against historical field-based measurement of LAI collected prior to the Terra Mission; and (d) direct comparison of MODIS LAI with coincident field measurements of LAI, mostly from hemispherical photography. The MODIS LAI product produced a wide variety of geographically and structurally specific temporal response profiles between different classes and even for sub-groups within classes of the SCAV. Historical and concurrent field measurements indicated that MODIS LAI was giving reasonable estimates for LAI for most cover types and land use types, but that major overestimation of LAI occurs in some eastern Australian open forests and woodlands. The six biome structural land cover classification showed some significant deviations in class allocation compared to the SCAV particularly where grasslands are allocated to shrubland, savanna woodlands are allocated to shrubland, savanna and broadleaf forest, and open forests are allocated to savanna and broadleaf forest. The land cover and LAI products could benefit from some additional examination of Australian data addressing the structural representation of Eucalypt canopies in the “space of canopy realisation” for savanna and broadleaf forest classes.  相似文献   

3.
Land cover is classified over East Asia using 250‐m Moderate Resolution Imaging Spectroradiometer (MODIS) land surface reflectance, MODIS snow cover and Operational Linescan System (OLS) human settlement data. The classification method includes a decision tree classification scheme that considers 11 kinds of land surface features derived from the OLS product and the time series of two MODIS products in 2000. The decision tree was defined manually based on the experiment because of insufficient training data, ease of tuning by visual interpretation, and extensibility to further research. The resulting classification is compared to three kinds of reference data, i.e. MODIS land cover product, Chinese digital land cover map, and Chinese census. The land cover classification can be input into a hydrological model applied to the Yellow River in China.  相似文献   

4.
This Letter presents a multi‐layer perceptron neural network (MLP‐NN) based algorithm to quantitatively determine precipitable water vapour (PWV) directly from near infrared (NIR) radiance measured by the Moderate Resolution Imaging Spectroradiometer (MODIS). First, the background of the MLP‐NN based algorithm is discussed briefly. Then, the radiance of MODIS NIR channels simulated through a radiative transfer model with a set of input variables covering a broad range of surface reflectance and water vapour content are used to train MLP‐NN. Finally, PWV values derived by the MLP‐NN based algorithm are compared with radiosonde observations and a root mean squared error of 5.2 kg m?2 is found from this comparison.  相似文献   

5.
Four 1 km global land cover products are currently available to the scientific community: the University of Maryland (UMD) global land cover product, the International Geosphere–Biosphere Programme Data and Information System Cover (IGBP‐DISCover), the MODerate resolution Imaging Spectrometer (MODIS) global land cover product and Global Land Cover 2000 (GLC2000). Because of differences in data sources, temporal scales, classification systems and methodologies, it is important to compare and validate these global maps before using them for a variety of studies at regional to global scales. This study aimed to perform the validation and comparison of the four global land cover datasets, and to examine the suitability and accuracy of different coarse spatial resolution datasets in mapping and monitoring cropland across China. To meet this objective, we compared the four global land cover products with the National Land Cover Dataset 2000 (NLCD‐2000) at three scales to evaluate the accuracy of estimates of aggregated cropland areas in China. This was followed by a spatial comparison to assess the accuracies of the four products in estimating the spatial distribution of cropland across China. A comparative analysis showed that there are varying levels of apparent discrepancies in estimating the cropland of China between these four global land cover datasets, and that both area totals and spatial (dis)agreement between them vary from region to region. Among these, the MODIS dataset has the best fit in depicting China's croplands. The coarse spatial resolution and the per pixel classification approach, as well as landscape heterogeneity, are the main reasons for the large discrepancies between the global land cover datasets tested and the reference data.  相似文献   

6.
Within the past decade, several global land cover data sets derived from satellite observations have become available to the scientific community. They offer valuable information on the current state of the Earth's land surface. However, considerable disagreements among them and classification legends not primarily suited for specific applications such as carbon cycle model parameterizations pose significant challenges and uncertainties in the use of such data sets.This paper addresses the user community of global land cover products. We first review and compare several global land cover products, i.e. the Global Land Cover Characterization Database (GLCC), Global Land Cover 2000 (GLC2000), and the MODIS land cover product, and highlight individual strengths and weaknesses of mapping approaches. Our overall objective is to present a straightforward method that merges existing products into a desired classification legend. This process follows the idea of convergence of evidence and generates a ‘best-estimate’ data set using fuzzy agreement. We apply our method to develop a new joint 1-km global land cover product (SYNMAP) with improved characteristics for land cover parameterization of the carbon cycle models that reduces land cover uncertainties in carbon budget calculations.The overall advantage of the SYNMAP legend is that all classes are properly defined in terms of plant functional type mixtures, which can be remotely sensed and include the definitions of leaf type and longevity for each class with a tree component. SYNMAP is currently used for parameterization in a European model intercomparison initiative of three global vegetation models: BIOME-BGC, LPJ, and ORCHIDEE.Corroboration of SYNMAP against GLCC, GLC2000 and MODIS land cover products reveals improved agreement of SYNMAP with all other land cover products and therefore indicates the successful exploration of synergies between the different products. However, given that we cannot provide extensive validation using reference data we are unable to prove that SYNMAP is actually more accurate. SYNMAP is available on request from Martin Jung.  相似文献   

7.
The paper investigated the application of MODIS data for mapping regional land cover at moderate resolutions (250 and 500 m), for regional conservation purposes. Land cover maps were generated for two major conservation areas (Greater Yellowstone Ecosystem—GYE, USA and the Pará State, Brazil) using MODIS data and decision tree classifications. The MODIS land cover products were evaluated using existing Landsat TM land cover maps as reference data. The Landsat TM land cover maps were processed to their fractional composition at the MODIS resolution (250 and 500 m). In GYE, the MODIS land cover was very successful at mapping extensive cover types (e.g. coniferous forest and grasslands) and far less successful at mapping smaller habitats (e.g. wetlands, deciduous tree cover) that typically occur in patches that are smaller than the MODIS pixels, but are reported to be very important to biodiversity conservation. The MODIS classification for Pará State was successful at producing a regional forest/non-forest product which is useful for monitoring the extreme human impacts such as deforestation. The ability of MODIS data to map secondary forest remains to be tested, since regrowth typically harbors reduced levels of biodiversity. The two case studies showed the value of using multi-date 250 m data with only two spectral bands, as well as single day 500 m data with seven spectral bands, thus illustrating the versatile use of MODIS data in two contrasting environments. MODIS data provide new options for regional land cover mapping that are less labor-intensive than Landsat and have higher resolution than previous 1 km AVHRR or the current 1 km global land cover product. The usefulness of the MODIS data in addressing biodiversity conservation questions will ultimately depend upon the patch sizes of important habitats and the land cover transformations that threaten them.  相似文献   

8.
Global land use and land cover products in highly dynamic tropical ecosystems lack the detail needed for natural resource management and monitoring at the national and provincial level. The MODIS sensor provides improved opportunities to combine multispectral and multitemporal data for land use and land cover mapping. In this paper we compare the MODIS Global Land Cover Classification Product with recent land use and land cover maps at the national level over a characteristic location of Miombo woodlands in the province of Zambezia, Mozambique. The performances of three land cover-mapping approaches were assessed: single-date supervised classification, principal component analysis of band-pair difference images, and multitemporal NDVI analysis. Extensive recent field data were used for the definition of the test sites and accuracy assessment. Encouraging results were achieved with the three approaches. The classification results were refined with the help of a digital elevation model. The most consistent results were achieved using principal component analysis of band-pair difference images. This method provided the most accurate classifications for agriculture, wetlands, grasslands, thicket and open forest. The overall classification accuracy reached 90%. The multitemporal NDVI provided a more accurate classification for the dense forest cover class. The selection of the right image dates proved to be critical for all the cases evaluated. The flexibility of these alternatives makes them promising options for rapid and inexpensive land cover mapping in regions of high environmental variability such as tropical developing countries.  相似文献   

9.
基于MODIS温度和植被指数产品的山东省土地覆盖变化研究   总被引:1,自引:0,他引:1  
地表温度(LST)与归一化植被指数(NDVI)构成的NDVI-Ts特征空间具有丰富的地学和生态学内涵。MODIS数据因其优越的时间分辨率、波谱分辨率,已被广泛地运用于各个领域。在本研究中,运用遥感技术和GIS技术相结合的手段,利用NASA提供的MODIS温度产品和NDVI产品,以山东省土地利用图、山东省TM遥感影像图和基于3S技术的山东省森林资源调查项目的外业调查数据为参考和评价标准,以NDVI-Ts时间序列为指标,在进行土地覆盖分类的基础上,分析比较了山东省土地覆盖从2000年到2006年的变化情况。研究结果表明,利用MODIS产品将NDVI-Ts时间序列作为分类特征,在较大尺度范围的土地覆盖分类中具有较高的分类精度,有利于对土地覆盖变化进行动态监测。  相似文献   

10.
Conducting quantitative studies on the carbon balance or productivity of oil palm is important in understanding the role of this ecosystem in global climate change. In this study, we evaluated the accuracy of MODIS (Moderate Resolution Imaging Spectroradiometer) annual gross primary productivity (GPP) (the product termed MOD-17) and its upstream products, especially the MODIS land cover product (the product termed MOD-12). We used high-resolution Google Earth images to classify the land cover classes and their percentage cover within each 1 km spatial resolution MODIS pixel. We used field-based annual GPP for 2006 to estimate GPP for each pixel based on percentage cover. Both land cover and GPP were then compared to MODIS land cover and GPP products. The results show that for pure pixels that are 100% covered by mature oil palm trees, the RMSE (root mean square error) between MODIS and field-based annual GPP is 18%, and that this is increased to 27% for pixels containing mostly oil palm. Overall, for an area of about 42 km2 the RMSE is 26%. We conclude that land cover classification (at 1 km resolution) is one of the main factors for the discrepancy between MODIS and field-based GPP. We also conclude that the accuracy of the MODIS GPP product could be improved significantly by using higher-resolution land cover maps.  相似文献   

11.
The goal of this study is to evaluate the relative usefulness of high spectral and temporal resolutions of MODIS imagery data for land cover classification. In particular, we highlight the individual and combinatorial influence of spectral and temporal components of MODIS reflectance data in land cover classification. Our study relies on an annual time series of twelve MODIS 8-days composited images (MOD09A1) monthly acquired during the year 2000, at a 500 m nominal resolution. As our aim is not to propose an operational classifier directed at thematic mapping based on the most efficient combination of reflectance inputs — which will probably change across geographical regions and with different land cover nomenclatures — we intentionally restrict our experimental framework to continental Portugal. Because our observation data stream contains highly correlated components, we need to rank the temporal and the spectral features according not only to their individual ability at separating the land cover classes, but also to their differential contribution to the existing information. To proceed, we resort to the median Mahalanobis distance as a statistical separability criterion. Once achieved this arrangement, we strive to evaluate, in a classification perspective, the gain obtained when the dimensionality of the input feature space grows. We then successively embedded the prior ranked measures into the multitemporal and multispectral training data set of a Support Vector Machines (SVM) classifier. In this way, we show that, only the inclusion of the approximately first three dates substantially increases the classification accuracy. Moreover, this multitemporal factor has a significant effect when coupled with combinations of few spectral bands, but it turns negligible as soon as the full spectral information is exploited. Regarding the multispectral factor, its beneficence on classification accuracy remains more constant, regardless of the number of dates being used.  相似文献   

12.
This paper introduces a methodology for neural network global optimization. The aim is the simultaneous optimization of multilayer perceptron (MLP) network weights and architectures, in order to generate topologies with few connections and high classification performance for any data sets. The approach combines the advantages of simulated annealing, tabu search and the backpropagation training algorithm in order to generate an automatic process for producing networks with high classification performance and low complexity. Experimental results obtained with four classification problems and one prediction problem has shown to be better than those obtained by the most commonly used optimization techniques  相似文献   

13.
MODIS土地覆盖数据产品精度分析——以黄河源区为例   总被引:3,自引:0,他引:3  
MODIS土地覆盖数据产品覆盖广、时间分辨率高,是区域土地覆盖变化监测的重要数据源。本文以中国土地资源分类系统为依据,重新归类黄河源区MODIS土地覆盖数据。利用2000年和2006年黄河源区Land-sat解译数据为参考数据,对相应的MODIS土地覆盖数据,从数量精度和形状一致性两个方面进行精度分析和适用性评价。结果表明:在形状上,加入权重的总体形状一致性皆在69%以上,其中主要地类草地的一致性达到88%以上;在数量上,加入权重的总体面积相对误差在26%以内,误差主要产生在未利用土地等地类。MODIS土地覆盖数据产品在大尺度的土地覆盖监测中仍然有重要的应用价值。  相似文献   

14.
The advent of the Earth Observing System (EOS), and the Moderateresolution Imaging Spectroradiometer (MODIS) in particular, will usher in a new era of global remote sensing by providing very large data volumes for interpretation and processing. Since many data streams will contain correlated data, feature selection is an important practical problem for such activities as classification of global land cover based on spectral, temporal, spatial and directional data. Treebased classification methods offer a suite of promising approaches to extraction of meaningful features from large measurement spaces. This research develops a tree-based model that performs feature selection on a satellite database containing information on land covers in a semiarid region in Cochise County, Arizona. In addition, we test the abilities of several classifiers to correctly label land cover using this reduced set of inputs under various sampling schemes. Results from this analysis indicate that decision trees can reduce a high-dimension dataset to a manageable set of inputs that retain most of the information of the original database, while remaining largely insensitive to choice of sampling strategy, and that Fuzzy ARTMAP, a type of artificial neural network classifier, achieves highest accuracy in comparison to maximum-likelihood or decision-tree classifiers.  相似文献   

15.
为了成功将土地覆盖进行分类,选择合适的特征是至关重要的。针对利用MODIS数据进行宏观土地覆盖的分类问题,对三种典型的特征选择方法进行了比较研究。研究结果表明:分支定界法(BB)最适合于该土地覆盖分类问题,与此同时,ReliefF和mRMR方法在目标应用中的精度非常接近。研究结果同样表明进行特征选择是非常必要的,它不仅能够大大地降低计算复杂度,而且分类精度能够保持不变,甚至更高。  相似文献   

16.

This paper describes a comparative evaluation of several speckle reduction and texture analysis techniques, with particular emphasis on their applicability to supervised land cover classification from SAR images. Issues related to suppression of speckle in a uniform area, preservation of edges, and texture preservation are pursued in these filters. Quality of texture features is measured by the relevancy, discriminative power and ease of computation of the features. The discriminative power of texture features is measured using the Jeffreys-Matusita distance and classification performance measured on a validation set independent from the classifier's training set. Classifiers investigated are maximum-likelihood, multi-layer perceptron (MLP) and radial basis function (RBF) neural networks. Classification accuracy is measured by KHAT statistic calculated from confusion matrices. Two SAR images of ERS-1 and E-SAR programme showing different land cover categories within the regions of Douala and Ngaoundere (Cameroon), and a bi-polarized Synthetic Aperture Radar (SAR) image from an agricultural station near the city of Altona (Canada) are used for analysis. Speckle suppression techniques based on the wavelet transform performs the best, followed by the modified K-nearest neighbours and the Lee's local statistic filters. Depending on the nature of the land cover types being classified, texture features derived from second- and third-order histogram performed the best, followed by first-order statistics and features derived using the grey-level difference vector method. Among all classifiers considered, the MLP and the RBF neural networks performed the best, achieving up to 94% overall accuracy for the E-SAR image of Douala, for example.  相似文献   

17.
An optimized artificial immune network-based classification model, namely OPTINC, was developed for remote sensing-based land use/land cover (LULC) classification. Major improvements of OPTINC compared to a typical immune network-based classification model (aiNet) include (1) preservation of the best antibodies of each land cover class from the antibody population suppression, which ensures that each land cover class is represented by at least one antibody; (2) mutation rates being self-adaptive according to the model performance between training generations, which improves the model convergence; and (3) incorporation of both Euclidean distance and spectral angle mapping distance to measure affinity between two feature vectors using a genetic algorithm-based optimization, which helps the model to better discriminate LULC classes with similar characteristics. OPTINC was evaluated using two sites with different remote sensing data: a residential area in Denver, CO with high-spatial resolution QuickBird image and LiDAR data, and a suburban area in Monticello, UT with HyMap hyperspectral imagery. A decision tree, a multilayer feed-forward back-propagation neural network, and aiNet were also tested for comparison. Classification accuracy, local homogeneity of classified images, and model sensitivity to training sample size were examined. OPTINC outperformed the other models with higher accuracy and more spatially cohesive land cover classes with limited salt-and-pepper noise. OPTINC was relatively less sensitive to training sample size than the neural network, followed by the decision tree.  相似文献   

18.
Landsat-based land-use land-cover (LULC) mapping studies were previously conducted in Giba catchment, comprising an area of 4019 km2. No attempt has been done to map LULC of this catchment through the analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) time-series data. This article is aimed to see whether time-series MODIS NDVI data set is applicable for LULC mapping of Giba catchment or not. MODIS NDVI data sets of the year 2010 were used for classification analysis. The original data were subjected to MODIS Reproduction Tool and stacking. The re-projected and stacked images were filtered using Harmonic Analysis of Time-Series filtering algorism to remove the effects of cloud and other noises. The MODIS NDVI data sets (16-day maximum value composite) were classified using the ISODATA clustering algorithm available under ERDAS IMAGINE software. A series of unsupervised classification runs were carried out with a pre-defined number of classes (5–24). From this classification, the optimal numbers of classes were determined to be eight after checking for average divergence analysis. The classification result became eight LULC classes namely: bare land, grass land, irrigated land, cultivated land, area closure, shrub land, bush land, and forest land with an overall accuracy of 87.7%. It was therefore concluded that MODIS NDVI time-series image is applicable for mapping large watersheds.  相似文献   

19.
One of the products to be derived from data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) will identify locations where land cover changes attributable to human activities are occurring. The product aims to serve as an alarm where rapid land cover conversion can subsequently be analysed with higher resolution sensors such as Landsat 7. This paper describes the production procedure and change detection algorithms for the 250 m MODIS land cover change product. Multiple change detection algorithms, including three spectral methods and two texture methods, are utilized to generate the product from the two 250 m MODIS bands. The change detection methods are implemented with look-up tables (LUTs) which are initially generated using data from the Advanced Very High Resolution Radiometer (AVHRR) and Landsat Thematic Mapper (TM) until MODIS data become available. The results from the five methods are combined to improve confidence in the product. We test the performance of each method against several sets of simulated MODIS data derived from Landsat TM image pairs. The test data represent tropical deforestation, agricultural expansion and urbanization. The commission errors of the five methods and the combination are approximately 10%, with reasonable omission errors less than 25%.  相似文献   

20.
This study investigates the impact of using different combinations of Moderate Resolution Imaging Spectroradiometer (MODIS) and ancillary datasets on overall and per-class classification accuracies for nine land cover types modified from the classification system of the International Geosphere Biosphere Programme (IGBP). Twelve land cover maps were generated for Turkey using boosted decision trees (BDTs) based on the stepwise addition of 14 explanatory variables derived from a time series of 16-day MODIS composites between 2000 and 2006 (Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and four spectral bands) and ancillary climate and topographic data (minimum and maximum air temperature, precipitation, potential evapotranspiration, aspect, elevation, distance to sea and slope) at 500-m resolution. Evaluation of the 12 BDTs indicated that the BDT built as a function of all the MODIS and climate variables, aspect and elevation produced the highest degree of overall classification accuracy (79.8%) and kappa statistic (0.76) followed by the BDTs that additionally included distance to sea (DtS), and both DtS and slope. Based on an independent validation dataset derived from a pre-existing national forest map and Landsat images of Turkey, the highest overall accuracy (64.7%) and kappa coefficient (0.58) among the 12 land cover maps was achieved by using MODIS-derived NDVI time series only, followed by NDVI and EVI time series combined; NDVI, EVI and four MODIS spectral bands; and the combination of all MODIS and climate data, aspect, elevation and distance to sea, respectively. The largest improvements in producer's accuracies were observed for grasslands (+50%), barrenlands (+46%) and mixed forests (+39%) and in user's accuracies for grasslands (+53%), shrublands (+30%) and mixed forests (+28%), in relation to the lowest producer's accuracy. The results of this study indicate that BDTs can increase the accuracy of land cover classifications at the national scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号