首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
局部高斯分布拟合的脑MR图像分割及有偏场校正   总被引:1,自引:0,他引:1       下载免费PDF全文
为实现对灰度不均匀脑核磁共振(MR)图像分割的同时进行有偏场估计并校正,提出一种基于局部高斯分布拟合(LGDF)模型的多相水平集方法.通过分析图像有偏场模型的局部特性,将有偏场乘性因子引入到图像局部灰度均值的表达中,从而使有偏场乘性因子成为新的能量函数的变量.能量函数的迭代最小化既实现了目标组织分割,又有效估计了有偏场.合成图像和仿真脑MR图像实验结果表明,本文方法比现有多种方法分割性能更好,且利用本文方法估计的有偏场校正后的图像有更好的视觉效果.  相似文献   

2.
王海军  柳明 《计算机工程》2012,38(7):185-187
针对脑核磁共振成像中灰度不均匀的现象,提出一种基于局部信息的多相脑图分割模型。采用阈值法进行轮廓初始化,利用多相水平集拟合图像的局部信息,从而得到脑灰质、脑白质和脑脊液图像。实验结果表明,该模型能有效地对多相脑图进行分割,给出准确光滑的目标边界,并且不需要重新初始化。  相似文献   

3.
在医学图像分析中,脑组织图像分割有着重要的研究与应用价值。采用支持向量机方法对核磁共振脑图像进行研究。传统的支持向量机方法在图像分割中一般选用方形的区域,用该区域的像素灰度和纹理特征作为支持向量的训练样本,对图像进行提取和分析,得到分类结果。提出了一种新型的研究区域,在该区域上提取训练样本,对核磁共振脑图像进行分类。分类结果显示用新型区域做的图像分割提高了正确率。  相似文献   

4.
针对乳腺核磁共振成像的灰度不均匀现象,提出一种融合全局和局部信息的水平集图像分割方法(global and local combined C_V,GLCCV)。该方法将图像的局部信息融入基于全局信息的Chan-Vese(C_V)水平集方法;根据局部灰度拟合均值占全局灰度均值的比例,构造自适应平衡指示函数调节全局和局部效应之间的均衡;加入惩罚项以避免重新初始化。对比实验表明,该水平集分割模型能够有效分割多种灰度不均匀场景下的乳腺MR图像,在抗噪和精确性方面优于融合前的分割方法。  相似文献   

5.
能量传导模型及在医学图像分割中的应用   总被引:1,自引:0,他引:1  
提出了一种基于水平集框架的能量传导模型ECM(energy conduction model)用于对医学图像进行分割.该模型通过对图像中的灰度分布和空间中的温度场分布进行对比,有效定义了图像能量和图像能量的传导方程,并通过模拟热量传递的过程对方程进行求解.ECM模型的优点在于,它在描述图像灰度分布的全局特征的同时,有效地捕捉到图像局部区域的灰度对比度变化,因此它能够对灰度分布不均匀和含有噪声的图像进行精确分割.基于水平集函数本身的拓扑可变性,该方法还能够实现同一图像中的多目标分割.使用该方法对模拟和真实的医学图像进行了分割实验,实验结果表明了该方法的有效性和可靠性.  相似文献   

6.
脑MR图像中普遍存在灰度不均匀性,传统的分割方法无法得到理想的脑组织分割结果.为此提出一种基于互信息最大化准则的变分水平集凸优化分割模型.首先建立最大化图像灰度与标记之间互信息能量的分割模型,并融入偏移场信息;对模型进行水平集表示和凸优化后,再引入边缘指示函数加权的总变差范数;最后采用SplitBregman方法快速求解.实验结果表明,该模型可以得到较准确的脑组织分割和偏移场矫正结果,对噪声和灰度不均匀性有很好的鲁棒性.  相似文献   

7.
分割带标记线核磁共振(tagged MR)图像是左心室运动重建的前提.由于标记线的加载破坏了左心室的轮廓边缘和区域灰度一致性,再加上乳突肌的存在,使带标记线核磁共振图像的左心室内外轮廓分割变得相当困难.在变分框架下,将纹理分类信息与形状统计先验知识引入Mumford-Shah模型中,提出了一种改进的分割带标记线核磁共振图像的左心室内外轮廓的方法.该方法基于支持向量机对S滤波器组提取的纹理特征的分类结果,构造了一种新的图像能量表示;针对乳突肌及边缘断裂现象,引入形状统计先验信息来约束曲线的演化.因为分割过程利用了有监督学习策略,较好地克服了标记线对左心室区域灰度的影响,提高了分割精度.实验结果表明,该方法较以往方法具有更高的分割精度和更好的稳定性.  相似文献   

8.
无边活动轮廓模型(C-V模型)是水平集分割方法中的一种经典模型.传统的无边活动轮廓模型将灰度同质作为区域分割准则,这使其对于仅含两个同质区域且灰度变化不大的图像能够取得很好的分割效果,但对灰度渐变图像分割时,该模型往往无法得到正确结果.本文针对这一问题,通过引入Chebyshev距离构造一种新的相似度,以此来表征演化曲线内外灰度差异,修改了传统无边活动轮廓模型中均值取值的定义,使得演化曲线在图像灰度变化缓慢区域获得较大的驱动力.新模型克服了传统无边活动轮廓模型不能正确分割灰度渐变图像的不足.实验对比及分析表明,新模型能够更准确地分割灰度渐变图像,同时对噪声有一定的鲁棒性.  相似文献   

9.
针对多模态核磁共振(MR)脑肿瘤图像的分割问题,提出一种基于灰度分布匹配的分割算法。首先,学习图像灰度强度的非参数模型分布,来描述当前图像的正常区域。然后,计算肿瘤图像中各区域之间的全局相似性,从中寻找灰度分布与学习模型最匹配的子区域,同时利用平滑操作来避免存在孤立区域。最后,对FLAIR模态图像进行处理,以分离出脑水肿区域,最终获取脑肿瘤区域的准确边界。在多模态脑肿瘤图像数据库BraTS 2012上进行实验,结果表明该算法能够准确且完整的分割出肿瘤区域。  相似文献   

10.
针对传统脉冲耦合神经网络(PCNN)模型在图像分割时需要设置较多参数和不能准确分割低对比度图像的问题,提出一种简化的PCNN模型和改进算法。在简化模型中减少了在传统PCNN模型中需要设置的参数的数量;在改进算法中根据图像像素空间和灰度特征自适应设置模型参数,并根据图像灰度直方图求出灰度期望均值作为图像分割阈值,因此该算法无需选择 循环迭代次数,只需一次点火过程就能实现图像的有效分割。实验结果表明,该方法能准确分割图像,纹理细节清晰,分割结果优于人工调整参数的PCNN方法和Otsu方法。  相似文献   

11.
This paper presents a novel idea of intracranial segmentation of magnetic resonance (MR) brain image using pixel intensity values by optimum boundary point detection (OBPD) method. The newly proposed (OBPD) method consists of three steps. Firstly, the brain only portion is extracted from the whole MR brain image. The brain only portion mainly contains three regions–gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). We need two boundary points to divide the brain pixels into three regions on the basis of their intensity. Secondly, the optimum boundary points are obtained using the newly proposed hybrid GA–BFO algorithm to compute final cluster centres of FCM method. For a comparison, other soft computing techniques GA, PSO and BFO are also used. Finally, FCM algorithm is executed only once to obtain the membership matrix. The brain image is then segmented using this final membership matrix. The key to our success is that we have proposed a technique where the final cluster centres for FCM are obtained using OBPD method. In addition, reformulated objective function for optimization is used. Initial values of boundary points are constrained to be in a range determined from the brain dataset. The boundary points violating imposed constraints are repaired. This method is validated by using simulated T1-weighted MR brain images from IBSR database with manual segmentation results. Further, we have used MR brain images from the Brainweb database with additional noise levels to validate the robustness of our proposed method. It is observed that our proposed method significantly improves segmentation results as compared to other methods.  相似文献   

12.
In quantitative brain image analysis, accurate brain tissue segmentation from brain magnetic resonance image (MRI) is a critical step. It is considered to be the most important and difficult issue in the field of medical image processing. The quality of MR images is influenced by partial volume effect, noise, and intensity inhomogeneity, which render the segmentation task extremely challenging. We present a novel fuzzy c-means algorithm (RCLFCM) for segmentation and bias field correction of brain MR images. We employ a new gray-difference coefficient and design a new impact factor to measure the effect of neighbor pixels, so that the robustness of anti-noise can be enhanced. Moreover, we redefine the objective function of FCM (fuzzy c-means) by adding the bias field estimation model to overcome the intensity inhomogeneity in the image and segment the brain MR images simultaneously. We also construct a new spatial function by combining pixel gray value dissimilarity with its membership, and make full use of the space information between pixels to update the membership. Compared with other state-of-the-art approaches by using similarity accuracy on synthetic MR images with different levels of noise and intensity inhomogeneity, the proposed algorithm generates the results with high accuracy and robustness to noise.  相似文献   

13.
磁共振(magnetic resonance,MR)成像作为一种安全非侵入式的成像技术,可以提供高分辨率且具有不同对比度的大脑图像,被越来越多地应用于婴儿大脑研究中。将婴儿脑MR图像准确地分割为灰质、白质和脑脊液,是研究早期大脑发育模式不可或缺的基础处理环节。由于在等强度阶段(6~9月龄)婴儿脑MR图像中,灰质和白质信号强度基本一致,组织对比度极低,导致此阶段的脑组织分割非常具有挑战性。基于深度学习的等强度婴儿脑MR图像分割方法,由于其卓越的性能受到研究人员的广泛关注,但目前尚未有文献对该领域的方法进行系统总结和分析。因此本文对目前基于深度学习的等强度婴儿脑MR图像分割方法进行了系统总结,从基本思想、网络架构、性能及优缺点4个方面进行了介绍。并针对其中的典型算法在iSeg-2017数据集上的分割结果进行了对比分析,最后对等强度婴儿脑MR图像分割中存在的问题及未来研究方向进行展望。本文通过对目前基于深度学习的等强度婴儿脑MR图像分割方法进行总结,可以看出深度学习方法已经在等强度期婴儿脑分割中展现出巨大优势,相比传统方法在分割精度和效率上均有较大提升,将进一步促进人类人脑早期发育研究。  相似文献   

14.
基于局部区域拟合模型的磁共振图像分割与偏移估计算法   总被引:1,自引:0,他引:1  
任鸽  曹兴芹  杨勇 《计算机应用》2011,31(12):3350-3352
磁共振(MR)图像的灰度通常是不均匀的,这种不均匀性是由于成像设备的缺陷导致产生了一种光滑的偏移场.一般的基于灰度统计特性的分割算法都是假设目标区域和背景区域图像的灰度分别是一致的,因此该类算法不能很好地应用于磁共振图像的分割.提出一种基于局部拟合模型的磁共振图像分割与偏移估计算法:利用图像的局部区域的灰度特性建立恢复...  相似文献   

15.
Multiscale Segmentation of Three-Dimensional MR Brain Images   总被引:1,自引:0,他引:1  
Segmentation of MR brain images using intensity values is severely limited owing to field inhomogeneities, susceptibility artifacts and partial volume effects. Edge based segmentation methods suffer from spurious edges and gaps in boundaries. A multiscale method to MRI brain segmentation is presented which uses both edge and intensity information. First a multiscale representation of an image is created, which can be made edge dependent to favor intra-tissue diffusion over inter-tissue diffusion. Subsequently a multiscale linking model (the hyperstack) is used to group voxels into a number of objects based on intensity. It is shown that both an improvement in accuracy and a reduction in image post-processing can be achieved if edge dependent diffusion is used instead of linear diffusion. The combination of edge dependent diffusion and intensity based linking facilitates segmentation of grey matter, white matter and cerebrospinal fluid with minimal user interaction. To segment the total brain (white matter plus grey matter) morphological operations are applied to remove small bridges between the brain and cranium. If the total brain is segmented, grey matter, white matter and cerebrospinal fluid can be segmented by joining a small number of segments. Using a supervised segmentation technique and MRI simulations of a brain phantom for validation it is shown that the errors are in the order of or smaller than reported in literature.  相似文献   

16.
17.

Objective

Accurate brain tissue segmentation from magnetic resonance (MR) images is an essential step in quantitative brain image analysis, and hence has attracted extensive research attention. However, due to the existence of noise and intensity inhomogeneity in brain MR images, many segmentation algorithms suffer from limited robustness to outliers, over-smoothness for segmentations and limited segmentation accuracy for image details. To further improve the accuracy for brain MR image segmentation, a robust spatially constrained fuzzy c-means (RSCFCM) algorithm is proposed in this paper.

Method

Firstly, a novel spatial factor is proposed to overcome the impact of noise in the images. By incorporating the spatial information amongst neighborhood pixels, the proposed spatial factor is constructed based on the posterior probabilities and prior probabilities, and takes the spatial direction into account. It plays a role as linear filters for smoothing and restoring images corrupted by noise. Therefore, the proposed spatial factor is fast and easy to implement, and can preserve more details. Secondly, the negative log-posterior is utilized as dissimilarity function by taking the prior probabilities into account, which can further improve the ability to identify the class for each pixel. Finally, to overcome the impact of intensity inhomogeneity, we approximate the bias field at the pixel-by-pixel level by using a linear combination of orthogonal polynomials. The fuzzy objective function is then integrated with the bias field estimation model to overcome the intensity inhomogeneity in the image and segment the brain MR images simultaneously.

Results

To demonstrate the performances of the proposed algorithm for the images with/without skull stripping, the first group of experiments is carried out in clinical 3T-weighted brain MR images which contain quite serious intensity inhomogeneity and noise. Then we quantitatively compare our algorithm to state-of-the-art segmentation approaches by using Jaccard similarity on benchmark images obtained from IBSR and BrainWeb with different level of noise and intensity inhomogeneity. The comparison results demonstrate that the proposed algorithm can produce higher accuracy segmentation and has stronger ability of denoising, especially in the area with abundant textures and details.

Conclusion

In this paper, the RSCFCM algorithm is proposed by utilizing the negative log-posterior as the dissimilarity function, introducing a novel factor and integrating the bias field estimation model into the fuzzy objective function. This algorithm successfully overcomes the drawbacks of existing FCM-type clustering schemes and EM-type mixture models. Our statistical results (mean and standard deviation of Jaccard similarity for each tissue) on both synthetic and clinical images show that the proposed algorithm can overcome the difficulties caused by noise and bias fields, and is capable of improving over 5% segmentation accuracy comparing with several state-of-the-art algorithms.  相似文献   

18.
Typically, brain MR images present significant intensity variation across patients and scanners. Consequently, training a classifier on a set of images and using it subsequently for brain segmentation may yield poor results. Adaptive iterative methods usually need to be employed to account for the variations of the particular scan. These methods are complicated, difficult to implement and often involve significant computational costs. In this paper, a simple, non-iterative method is proposed for brain MR image segmentation. Two preprocessing techniques, namely intensity-inhomogeneity-correction, and more importantly MR image intensity standardization, used prior to segmentation, play a vital role in making the MR image intensities have a tissue-specific numeric meaning, which leads us to a very simple brain tissue segmentation strategy.Vectorial scale-based fuzzy connectedness and certain morphological operations are utilized first to generate the brain intracranial mask. The fuzzy membership value of each voxel within the intracranial mask for each brain tissue is then estimated. Finally, a maximum likelihood criterion with spatial constraints taken into account is utilized in classifying all voxels in the intracranial mask into different brain tissue groups. A set of inhomogeneity corrected and intensity standardized images is utilized as a training data set. We introduce two methods to estimate fuzzy membership values. In the first method, called SMG (for simple membership based on a gaussian model), the fuzzy membership value is estimated by fitting a multivariate Gaussian model to the intensity distribution of each brain tissue whose mean intensity vector and covariance matrix are estimated and fixed from the training data sets. The second method, called SMH (for simple membership based on a histogram), estimates fuzzy membership value directly via the intensity distribution of each brain tissue obtained from the training data sets. We present several studies to evaluate the performance of these two methods based on 10 clinical MR images of normal subjects and 10 clinical MR images of Multiple Sclerosis (MS) patients. A quantitative comparison indicates that both methods have overall better accuracy than the k-nearest neighbors (kNN) method, and have much better efficiency than the Finite Mixture (FM) model-based Expectation-Maximization (EM) method. Accuracy is similar for our methods and EM method for the normal subject data sets, but much better for our methods for the patient data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号