首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Redefining clustering for high-dimensional applications   总被引:1,自引:0,他引:1  
Clustering problems are well-known in the database literature for their use in numerous applications, such as customer segmentation, classification, and trend analysis. High-dimensional data has always been a challenge for clustering algorithms because of the inherent sparsity of the points. Recent research results indicate that, in high-dimensional data, even the concept of proximity or clustering may not be meaningful. We introduce a very general concept of projected clustering which is able to construct clusters in arbitrarily aligned subspaces of lower dimensionality. The subspaces are specific to the clusters themselves. This definition is substantially more general and realistic than the currently available techniques which limit the method to only projections from the original set of attributes. The generalized projected clustering technique may also be viewed as a way of trying to redefine clustering for high-dimensional applications by searching for hidden subspaces with clusters which are created by interattribute correlations. We provide a new concept of using extended cluster feature vectors in order to make the algorithm scalable for very large databases. The running time and space requirements of the algorithm are adjustable and are likely to trade-off with better accuracy  相似文献   

2.
Iterative projected clustering by subspace mining   总被引:3,自引:0,他引:3  
Irrelevant attributes add noise to high-dimensional clusters and render traditional clustering techniques inappropriate. Recently, several algorithms that discover projected clusters and their associated subspaces have been proposed. We realize the analogy between mining frequent itemsets and discovering dense projected clusters around random points. Based on this, we propose a technique that improves the efficiency of a projected clustering algorithm (DOC). Our method is an optimized adaptation of the frequent pattern tree growth method used for mining frequent itemsets. We propose several techniques that employ the branch and bound paradigm to efficiently discover the projected clusters. An experimental study with synthetic and real data demonstrates that our technique significantly improves on the accuracy and speed of previous techniques.  相似文献   

3.
基于单元区域的高维数据聚类算法   总被引:1,自引:0,他引:1  
高维数据空间维数较高,数据点分布稀疏、密度平均,从中发现数据聚类比较困难,而用基于距离的方法进行高维数据聚类,维数的增多会使得计算对象间距离的时间开销增大. CAHD(clustering algorithm of high-dimensional data)算法首先采用双向搜索策略在指定的n维空间或其子空间上发现数据点密集的单元区域,然后采用逐位与的方法为这些密集单元区域进行聚类分析.双向搜索策略能够有效地减少搜索空间,从而提高算法效率,同时,聚类密集单元区域只用到逐位与和位移两种机器指令,使得算法效率得到进一步提高.算法CAHD可以有效地处理高维数据的聚类问题.基于数据集的实验表明,算法具有很好的有效性.  相似文献   

4.
Cluster validation is a major issue in cluster analysis of data mining, which is the process of evaluating performance of clustering algorithms under varying input conditions. Many existing validity indices address clustering results of low-dimensional data. Within high-dimensional data, many of the dimensions are irrelevant, and the clusters usually only exist in some projected subspaces spanned by different combinations of dimensions. This paper presents a solution to the problem of cluster validation for projective clustering. We propose two new measurements for the intracluster compactness and intercluster separation of projected clusters. Based on these measurements and the conventional indices, three new cluster validity indices are presented. Combined with a fuzzy projective clustering algorithm, the new indices are used to determine the number of projected clusters in high-dimensional data. The suitability of our proposal has been demonstrated through an empirical study using synthetic and real-world datasets.  相似文献   

5.
随着信息技术的飞速发展和大数据时代的来临,数据呈现出高维性、非线性等复杂特征。对于高维数据来说,在全维空间上往往很难找到反映分布模式的特征区域,而大多数传统聚类算法仅对低维数据具有良好的扩展性。因此,传统聚类算法在处理高维数据的时候,产生的聚类结果可能无法满足现阶段的需求。而子空间聚类算法搜索存在于高维数据子空间中的簇,将数据的原始特征空间分为不同的特征子集,减少不相关特征的影响,保留原数据中的主要特征。通过子空间聚类方法可以发现高维数据中不易展现的信息,并通过可视化技术展现数据属性和维度的内在结构,为高维数据可视分析提供了有效手段。总结了近年来基于子空间聚类的高维数据可视分析方法研究进展,从基于特征选择、基于子空间探索、基于子空间聚类的3种不同方法进行阐述,并对其交互分析方法和应用进行分析,同时对高维数据可视分析方法的未来发展趋势进行了展望。  相似文献   

6.
Robust projected clustering   总被引:4,自引:2,他引:2  
Projected clustering partitions a data set into several disjoint clusters, plus outliers, so that each cluster exists in a subspace. Subspace clustering enumerates clusters of objects in all subspaces of a data set, and it tends to produce many overlapping clusters. Such algorithms have been extensively studied for numerical data, but only a few have been proposed for categorical data. Typical drawbacks of existing projected and subspace clustering algorithms for numerical or categorical data are that they rely on parameters whose appropriate values are difficult to set appropriately or that they are unable to identify projected clusters with few relevant attributes. We present P3C, a robust algorithm for projected clustering that can effectively discover projected clusters in the data while minimizing the number of required parameters. P3C does not need the number of projected clusters as input, and can discover, under very general conditions, the true number of projected clusters. P3C is effective in detecting very low-dimensional projected clusters embedded in high dimensional spaces. P3C positions itself between projected and subspace clustering in that it can compute both disjoint or overlapping clusters. P3C is the first projected clustering algorithm for both numerical and categorical data.  相似文献   

7.
Due to data sparseness and attribute redundancy in high-dimensional data, clusters of objects often exist in subspaces rather than in the entire space. To effectively address this issue, this paper presents a new optimization algorithm for clustering high-dimensional categorical data, which is an extension of the k-modes clustering algorithm. In the proposed algorithm, a novel weighting technique for categorical data is developed to calculate two weights for each attribute (or dimension) in each cluster and use the weight values to identify the subsets of important attributes that categorize different clusters. The convergence of the algorithm under an optimization framework is proved. The performance and scalability of the algorithm is evaluated experimentally on both synthetic and real data sets. The experimental studies show that the proposed algorithm is effective in clustering categorical data sets and also scalable to large data sets owning to its linear time complexity with respect to the number of data objects, attributes or clusters.  相似文献   

8.
HARP: a practical projected clustering algorithm   总被引:4,自引:0,他引:4  
In high-dimensional data, clusters can exist in subspaces that hide themselves from traditional clustering methods. A number of algorithms have been proposed to identify such projected clusters, but most of them rely on some user parameters to guide the clustering process. The clustering accuracy can be seriously degraded if incorrect values are used. Unfortunately, in real situations, it is rarely possible for users to supply the parameter values accurately, which causes practical difficulties in applying these algorithms to real data. In this paper, we analyze the major challenges of projected clustering and suggest why these algorithms need to depend heavily on user parameters. Based on the analysis, we propose a new algorithm that exploits the clustering status to adjust the internal thresholds dynamically without the assistance of user parameters. According to the results of extensive experiments on real and synthetic data, the new method has excellent accuracy and usability. It outperformed the other algorithms even when correct parameter values were artificially supplied to them. The encouraging results suggest that projected clustering can be a practical tool for various kinds of real applications.  相似文献   

9.
Dynamical systems are commonly used to describe the state of time-dependent systems. In many engineering and control problems, the state space is high-dimensional making it difficult to analyze and visualize the behavior of the system for varying input conditions. We present a novel dimensionality reduction technique that is tailored to high-dimensional dynamical systems. In contrast to standard general purpose dimensionality reduction algorithms, we use energy minimization to preserve properties of the flow in the high-dimensional space. Once the projection operator is optimized, further high-dimensional trajectories are projected easily. Our 3D projection maintains a number of useful flow properties, such as critical points and flow maps, and is optimized to match geometric characteristics of the high-dimensional input, as well as optional user constraints. We apply our method to trajectories traced in the phase spaces of second-order dynamical systems, including finite-sized objects in fluids, the circular restricted three-body problem and a damped double pendulum. We compare the projections with standard visualization techniques, such as PCA, t-SNE and UMAP, and visualize the dynamical systems with multiple coordinated views interactively, featuring a spatial embedding, projection to subspaces, our dimensionality reduction and a seed point exploration tool.  相似文献   

10.
基于Seed集的半监督核聚类   总被引:2,自引:1,他引:1       下载免费PDF全文
提出了一种新的半监督核聚类算法——SKK-均值算法。算法利用一定数量的标记样本构成seed集,作为监督信息来初始化K-均值算法的聚类中心,引导聚类过程并约束数据划分;同时还采用了核方法把输入数据映射到高维特征空间,并用核函数来实现样本之间的距离计算。在UCI数据集上进行了数值实验,并与K-均值算法和核-K-均值算法进行了比较。  相似文献   

11.
This paper presents a new k-means type algorithm for clustering high-dimensional objects in sub-spaces. In high-dimensional data, clusters of objects often exist in subspaces rather than in the entire space. For example, in text clustering, clusters of documents of different topics are categorized by different subsets of terms or keywords. The keywords for one cluster may not occur in the documents of other clusters. This is a data sparsity problem faced in clustering high-dimensional data. In the new algorithm, we extend the k-means clustering process to calculate a weight for each dimension in each cluster and use the weight values to identify the subsets of important dimensions that categorize different clusters. This is achieved by including the weight entropy in the objective function that is minimized in the k-means clustering process. An additional step is added to the k-means clustering process to automatically compute the weights of all dimensions in each cluster. The experiments on both synthetic and real data have shown that the new algorithm can generate better clustering results than other subspace clustering algorithms. The new algorithm is also scalable to large data sets.  相似文献   

12.
Competitive learning mechanisms for clustering, in general, suffer from poor performance for very high-dimensional (>1000) data because of "curse of dimensionality" effects. In applications such as document clustering, it is customary to normalize the high-dimensional input vectors to unit length, and it is sometimes also desirable to obtain balanced clusters, i.e., clusters of comparable sizes. The spherical kmeans (spkmeans) algorithm, which normalizes the cluster centers as well as the inputs, has been successfully used to cluster normalized text documents in 2000+ dimensional space. Unfortunately, like regular kmeans and its soft expectation-maximization-based version, spkmeans tends to generate extremely imbalanced clusters in high-dimensional spaces when the desired number of clusters is large (tens or more). This paper first shows that the spkmeans algorithm can be derived from a certain maximum likelihood formulation using a mixture of von Mises-Fisher distributions as the generative model, and in fact, it can be considered as a batch-mode version of (normalized) competitive learning. The proposed generative model is then adapted in a principled way to yield three frequency-sensitive competitive learning variants that are applicable to static data and produced high-quality and well-balanced clusters for high-dimensional data. Like kmeans, each iteration is linear in the number of data points and in the number of clusters for all the three algorithms. A frequency-sensitive algorithm to cluster streaming data is also proposed. Experimental results on clustering of high-dimensional text data sets are provided to show the effectiveness and applicability of the proposed techniques.  相似文献   

13.
Due to the famous dimensionality curse problem, search in a high-dimensional space is considered as a "hard" problem. In this paper, a novel composite distance transformation method, which is called CDT, is proposed to support a fast k-nearest-neighbor (k-NN) search in high-dimensional spaces. In CDT, all (n) data points are first grouped into some clusters by a k-Means clustering algorithm. Then a composite distance key of each data point is computed. Finally, these index keys of such n data points are inserted by a partition-based B -tree. Thus, given a query point, its k-NN search in high-dimensional spaces is transformed into the search in the single dimensional space with the aid of CDT index. Extensive performance studies are conducted to evaluate the effectiveness and efficiency of the proposed scheme. Our results show-that this method outperforms the state-of-the-art high-dimensional search techniques, such as the X-Tree, VA-file, iDistance and NB-Tree.  相似文献   

14.
When dealing with high dimensional data, clustering faces the curse of dimensionality problem. In such data sets, clusters of objects exist in subspaces rather than in whole feature space. Subspace clustering algorithms have already been introduced to tackle this problem. However, noisy data points present in this type of data can have great impact on the clustering results. Therefore, to overcome these problems simultaneously, the fuzzy soft subspace clustering with noise detection (FSSC-ND) is proposed. The presented algorithm is based on the entropy weighting soft subspace clustering and noise clustering. The FSSC-ND algorithm uses a new objective function and update rules to achieve the mentioned goals and present more interpretable clustering results. Several experiments have been conducted on artificial and UCI benchmark datasets to assess the performance of the proposed algorithm. In addition, a number of cancer gene expression datasets are used to evaluate the performance of the proposed algorithm when dealing with high dimensional data. The results of these experiments demonstrate the superiority of the FSSC-ND algorithm in comparison with the state of the art clustering algorithms developed in earlier research.  相似文献   

15.
一种基于网格方法的高维数据流子空间聚类算法   总被引:4,自引:0,他引:4  
基于对网格聚类方法的分析,结合由底向上的网格方法和自顶向下的网格方法,设计了一个能在线处理高维数据流的子空间聚类算法。通过利用由底向上网格方法对数据的压缩能力和自顶向下网格方法处理高维数据的能力,算法能基于对数据流的一次扫描,快速识别数据中位于不同子空间内的簇。理论分析以及在多个数据集上的实验表明算法具有较高的计算精度与计算效率。  相似文献   

16.
Projective clustering by histograms   总被引:5,自引:0,他引:5  
Recent research suggests that clustering for high-dimensional data should involve searching for "hidden" subspaces with lower dimensionalities, in which patterns can be observed when data objects are projected onto the subspaces. Discovering such interattribute correlations and location of the corresponding clusters is known as the projective clustering problem. We propose an efficient projective clustering technique by histogram construction (EPCH). The histograms help to generate "signatures", where a signature corresponds to some region in some subspace, and signatures with a large number of data objects are identified as the regions for subspace clusters. Hence, projected clusters and their corresponding subspaces can be uncovered. Compared to the best previous methods to our knowledge, this approach is more flexible in that less prior knowledge on the data set is required, and it is also much more efficient. Our experiments compare behaviors and performances of this approach and other projective clustering algorithms with different data characteristics. The results show that our technique is scalable to very large databases, and it is able to return accurate clustering results.  相似文献   

17.
This paper proposes a grid-based hierarchical clustering algorithm (GACH) as an efficient and robust method to explore clusters in high-dimensional data with no prior knowledge. It discovers the initial positions of the potential clusters automatically and then combines them hierarchically to obtain the final clusters. In this regard, GACH first projects the data patterns on a two-dimensional space (i.e., on a plane established by two features) to overcome the curse of dimensionality problem in high-dimensional data. To choose these two well-informed features, a simple and fast feature selection algorithm is proposed. Then, through meshing the plane with grid lines, GACH detects the crowded grid points. The nearest data patterns around these grid points are considered as initial members of some potential clusters. By returning the patterns back to their true dimensions, GACH refines these clusters. In the merging phase, GACH combines the closely adjacent clusters in a hierarchical bottom-up manner to construct the final clusters’ members. The main features of GACH are: (1) it automatically discovers the clusters, (2) the obtained clusters are stable, (3) it is efficient for data sets with high dimensions, and (4) its merging process involves a threshold which can be obtained in advance for well-clustered data. To assess our proposed algorithm, it is applied on some benchmark data sets and the validity of obtained clusters is compared with the results of some other clustering algorithms. This comparison shows that GACH is accurate, efficient and feasible to discover clusters in high-dimensional data.  相似文献   

18.
李森  刘希玉 《计算机应用研究》2012,29(11):4093-4096
针对高维数据的聚类问题,提出一种基于间隔Fisher分析(MFA)的半监督聚类算法。该算法首先使用已标记样本进行MFA映射,得到投影矩阵W后,再利用求得的投影方法对未标记样本进行降维;然后在低维空间引入基于约束的球形K-means(PCSKM)算法对降维后的数据进行半监督聚类,根据第一次的聚类结果,交替进行降维与聚类操作,直到算法收敛为止。该算法利用监督信息有效地集成了数据降维和半监督聚类。实验结果表明,该方法能够有效处理高维数据,同时能提高聚类性能。  相似文献   

19.
Most existing semi-supervised clustering algorithms are not designed for handling high-dimensional data. On the other hand, semi-supervised dimensionality reduction methods may not necessarily improve the clustering performance, due to the fact that the inherent relationship between subspace selection and clustering is ignored. In order to mitigate the above problems, we present a semi-supervised clustering algorithm using adaptive distance metric learning (SCADM) which performs semi-supervised clustering and distance metric learning simultaneously. SCADM applies the clustering results to learn a distance metric and then projects the data onto a low-dimensional space where the separability of the data is maximized. Experimental results on real-world data sets show that the proposed method can effectively deal with high-dimensional data and provides an appealing clustering performance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号