首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given a “black box” function to evaluate an unknown rational polynomial f ? \mathbbQ[x]f \in {\mathbb{Q}}[x] at points modulo a prime p, we exhibit algorithms to compute the representation of the polynomial in the sparsest shifted power basis. That is, we determine the sparsity $t \in {\mathbb{Z}}_{>0}$t \in {\mathbb{Z}}_{>0}, the shift a ? \mathbbQ\alpha \in {\mathbb{Q}}, the exponents 0 £ e1 < e2 < ? < et{0 \leq e_{1} < e_{2} < \cdots < e_{t}}, and the coefficients c1, ?, ct ? \mathbbQ \{0}c_{1}, \ldots , c_{t} \in {\mathbb{Q}} \setminus \{0\} such that
f(x) = c1(x-a)e1+c2(x-a)e2+ ?+ct(x-a)etf(x) = c_{1}(x-\alpha)^{e_{1}}+c_{2}(x-\alpha)^{e_{2}}+ \cdots +c_{t}(x-\alpha)^{e_{t}}  相似文献   

2.
In classical constraint satisfaction, redundant modeling has been shown effective in increasing constraint propagation and reducing search space for many problem instances. In this paper, we investigate, for the first time, how to benefit the same from redundant modeling in weighted constraint satisfaction problems (WCSPs), a common soft constraint framework for modeling optimization and over-constrained problems. Our work focuses on a popular and special class of problems, namely, permutation problems. First, we show how to automatically generate a redundant permutation WCSP model from an existing permutation WCSP using generalized model induction. We then uncover why naively combining mutually redundant permutation WCSPs by posting channeling constraints as hard constraints and relying on the standard node consistency (NC*) and arc consistency (AC*) algorithms would miss pruning opportunities, which are available even in a single model. Based on these observations, we suggest two approaches to handle the combined WCSP models. In our first approach, we propose m\text -NC\text c*m\text {-NC}_{\text c}^* and m\text -AC\text c*m\text {-AC}_{\text c}^* and their associated algorithms for effectively enforcing node and arc consistencies in a combined model with m sub-models. The two notions are strictly stronger than NC* and AC* respectively. While the first approach specifically refines NC* and AC* so as to apply to combined models, in our second approach, we propose a parameterized local consistency LB(m,Φ). The consistency can be instantiated with any local consistency Φ for single models and applied to a combined model with m sub-models. We also provide a simple algorithm to enforce LB(m,Φ). With the two suggested approaches, we demonstrate their applicabilities on several permutation problems in the experiments. Prototype implementations of our proposed algorithms confirm that applying 2\text -NC\text c*,  2\text -AC\text c*2\text {-NC}_{\text c}^*,\;2\text {-AC}_{\text c}^*, and LB(2,Φ) on combined models allow far more constraint propagation than applying the state-of-the-art AC*, FDAC*, and EDAC* algorithms on single models of hard benchmark problems.  相似文献   

3.
Fast Algorithms for the Density Finding Problem   总被引:1,自引:0,他引:1  
We study the problem of finding a specific density subsequence of a sequence arising from the analysis of biomolecular sequences. Given a sequence A=(a 1,w 1),(a 2,w 2),…,(a n ,w n ) of n ordered pairs (a i ,w i ) of numbers a i and width w i >0 for each 1≤in, two nonnegative numbers , u with u and a number δ, the Density Finding Problem is to find the consecutive subsequence A(i *,j *) over all O(n 2) consecutive subsequences A(i,j) with width constraint satisfying w(i,j)=∑ r=i j w r u such that its density is closest to δ. The extensively studied Maximum-Density Segment Problem is a special case of the Density Finding Problem with δ=∞. We show that the Density Finding Problem has a lower bound Ω(nlog n) in the algebraic decision tree model of computation. We give an algorithm for the Density Finding Problem that runs in optimal O(nlog n) time and O(nlog n) space for the case when there is no upper bound on the width of the sequence, i.e., u=w(1,n). For the general case, we give an algorithm that runs in O(nlog 2 m) time and O(n+mlog m) space, where and w min=min  r=1 n w r . As a byproduct, we give another O(n) time and space algorithm for the Maximum-Density Segment Problem. Grants NSC95-2221-E-001-016-MY3, NSC-94-2422-H-001-0001, and NSC-95-2752-E-002-005-PAE, and by the Taiwan Information Security Center (TWISC) under the Grants NSC NSC95-2218-E-001-001, NSC95-3114-P-001-002-Y, NSC94-3114-P-001-003-Y and NSC 94-3114-P-011-001.  相似文献   

4.
We solve an open problem in communication complexity posed by Kushilevitz and Nisan (1997). Let R(f) and $D^\mu_\in (f)$D^\mu_\in (f) denote the randomized and μ-distributional communication complexities of f, respectively (∈ a small constant). Yao’s well-known minimax principle states that $R_{\in}(f) = max_\mu \{D^\mu_\in(f)\}$R_{\in}(f) = max_\mu \{D^\mu_\in(f)\}. Kushilevitz and Nisan (1997) ask whether this equality is approximately preserved if the maximum is taken over product distributions only, rather than all distributions μ. We give a strong negative answer to this question. Specifically, we prove the existence of a function f : {0, 1}n ×{0, 1}n ? {0, 1}f : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\} for which maxμ product {Dm ? (f)} = Q(1)  but R ? (f) = Q(n)\{D^\mu_\in (f)\} = \Theta(1) \,{\textrm but}\, R_{\in} (f) = \Theta(n). We also obtain an exponential separation between the statistical query dimension and signrank, solving a problem previously posed by the author (2007).  相似文献   

5.
Given an alphabet Σ={1,2,…,|Σ|} text string T∈Σ n and a pattern string P∈Σ m , for each i=1,2,…,nm+1 define L p (i) as the p-norm distance when the pattern is aligned below the text and starts at position i of the text. The problem of pattern matching with L p distance is to compute L p (i) for every i=1,2,…,nm+1. We discuss the problem for d=1,2,∞. First, in the case of L 1 matching (pattern matching with an L 1 distance) we show a reduction of the string matching with mismatches problem to the L 1 matching problem and we present an algorithm that approximates the L 1 matching up to a factor of 1+ε, which has an O(\frac1e2nlogmlog|S|)O(\frac{1}{\varepsilon^{2}}n\log m\log|\Sigma|) run time. Then, the L 2 matching problem (pattern matching with an L 2 distance) is solved with a simple O(nlog m) time algorithm. Finally, we provide an algorithm that approximates the L matching up to a factor of 1+ε with a run time of O(\frac1enlogmlog|S|)O(\frac{1}{\varepsilon}n\log m\log|\Sigma|) . We also generalize the problem of String Matching with mismatches to have weighted mismatches and present an O(nlog 4 m) algorithm that approximates the results of this problem up to a factor of O(log m) in the case that the weight function is a metric.  相似文献   

6.
We study the classical approximate string matching problem, that is, given strings P and Q and an error threshold k, find all ending positions of substrings of Q whose edit distance to P is at most k. Let P and Q have lengths m and n, respectively. On a standard unit-cost word RAM with word size w≥log n we present an algorithm using time
O(nk ·min(\fraclog2 mlogn,\fraclog2 mlogww) + n)O\biggl(nk \cdot \min\biggl(\frac{\log^2 m}{\log n},\frac{\log^2 m\log w}{w}\biggr) + n\biggr)  相似文献   

7.
The concept of $(\overline{\in},\overline{\in} \vee \overline{q})The concept of ([`( ? )],[`( ? )] ú[`(q)])(\overline{\in},\overline{\in} \vee \overline{q})-fuzzy interior ideals of semigroups is introduced and some related properties are investigated. In particular, we describe the relationships among ordinary fuzzy interior ideals, (∈, ∈ ∨ q)-fuzzy interior ideals and ([`( ? )],[`( ? )] ú[`(q)])(\overline{\in},\overline{\in} \vee \overline{q})-fuzzy interior ideals of semigroups. Finally, we give some characterization of [F] t by means of (∈, ∈ ∨ q)-fuzzy interior ideals.  相似文献   

8.
Quantitative Separation Logic and Programs with Lists   总被引:1,自引:0,他引:1  
This paper presents an extension of a decidable fragment of Separation Logic for singly-linked lists, defined by Berdine et al. (2004). Our main extension consists in introducing atomic formulae of the form ls k (x, y) describing a list segment of length k, stretching from x to y, where k is a logical variable interpreted over positive natural numbers, that may occur further inside Presburger constraints. We study the decidability of the full first-order logic combining unrestricted quantification of arithmetic and location variables. Although the full logic is found to be undecidable, validity of entailments between formulae with the quantifier prefix in the language $* {$\mathbbN, "\mathbbN}*\exists^* \{\exists_{\bf \mathbb{N}}, \forall_{\bf \mathbb{N}}\}^* is decidable. We provide here a model theoretic method, based on a parametric notion of shape graphs. We have implemented our decision technique, providing a fully automated framework for the verification of quantitative properties expressed as pre- and post-conditions on programs working on lists and integer counters.  相似文献   

9.
Some Hamiltonians are constructed from the unitary \checkRi,i+1(q, j){\check{R}_{i,i+1}(\theta, \varphi)}-matrices, where θ and j{\varphi} are time-independent parameters. We show that the entanglement sudden death (ESD) can happen in these closed Yang–Baxter systems. It is found that the ESD is not only sensitive to the initial condition, but also has a great connection with different Yang–Baxter systems. Especially, we find that the meaningful parameter j{\varphi} has a great influence on ESD.  相似文献   

10.
The D0L sequence equivalence problem consists of deciding, given two morphisms , and a word , whether or not g i (w) = h i (w) for all i ≥ 0. We show that in case of smooth and loop-free morphisms, to decide the D0L sequence equivalence problem, it suffices to consider the terms of the sequences with , where n is the cardinality of X.  相似文献   

11.
We show a new and constructive proof of the following language-theoretic result: for every context-free language L, there is a bounded context-free language L′⊆L which has the same Parikh (commutative) image as L. Bounded languages, introduced by Ginsburg and Spanier, are subsets of regular languages of the form w1*w2*?wm*w_{1}^{*}w_{2}^{*}\cdots w_{m}^{*} for some w 1,…,w m Σ . In particular bounded context-free languages have nice structural and decidability properties. Our proof proceeds in two parts. First, we give a new construction that shows that each context free language L has a subset L N that has the same Parikh image as L and that can be represented as a sequence of substitutions on a linear language. Second, we inductively construct a Parikh-equivalent bounded context-free subset of L N .  相似文献   

12.
Using ideas from automata theory, we design the first polynomial deterministic identity testing algorithm for the sparse noncommutative polynomial identity testing problem. Given a noncommuting black-box polynomial f ? \mathbb F{x1,?,xn}f \in {\mathbb F}\{x_{1},\ldots,x_n\} of degree d with at most t monomials, where the variables xi are noncommuting, we give a deterministic polynomial identity test that checks if C o 0C \equiv 0 and runs in time polynomial in dn, |C|, and t. Our algorithm evaluates the black-box polynomial for xi assigned to matrices over \mathbbF{\mathbb{F}} and, in fact, reconstructs the entire polynomial f in time polynomial in n, d and t.  相似文献   

13.
In this paper we study collective additive tree spanners for special families of graphs including planar graphs, graphs with bounded genus, graphs with bounded tree-width, graphs with bounded clique-width, and graphs with bounded chordality. We say that a graph G=(V,E) admits a system of μ collective additive tree r -spanners if there is a system $\mathcal{T}(G)In this paper we study collective additive tree spanners for special families of graphs including planar graphs, graphs with bounded genus, graphs with bounded tree-width, graphs with bounded clique-width, and graphs with bounded chordality. We say that a graph G=(V,E) admits a system of μ collective additive tree r -spanners if there is a system T(G)\mathcal{T}(G) of at most μ spanning trees of G such that for any two vertices x,y of G a spanning tree T ? T(G)T\in\mathcal{T}(G) exists such that d T (x,y)≤d G (x,y)+r. We describe a general method for constructing a “small” system of collective additive tree r-spanners with small values of r for “well” decomposable graphs, and as a byproduct show (among other results) that any weighted planar graph admits a system of O(?n)O(\sqrt{n}) collective additive tree 0-spanners, any weighted graph with tree-width at most k−1 admits a system of klog 2 n collective additive tree 0-spanners, any weighted graph with clique-width at most k admits a system of klog 3/2 n collective additive tree (2w)(2\mathsf{w}) -spanners, and any weighted graph with size of largest induced cycle at most c admits a system of log 2 n collective additive tree (2?c/2?w)(2\lfloor c/2\rfloor\mathsf{w}) -spanners and a system of 4log 2 n collective additive tree (2(?c/3?+1)w)(2(\lfloor c/3\rfloor +1)\mathsf {w}) -spanners (here, w\mathsf{w} is the maximum edge weight in G). The latter result is refined for weighted weakly chordal graphs: any such graph admits a system of 4log 2 n collective additive tree (2w)(2\mathsf{w}) -spanners. Furthermore, based on this collection of trees, we derive a compact and efficient routing scheme for those families of graphs.  相似文献   

14.
Summary Let L b = {w 1 *...* w 2b ¦w i is in {0,1}* and w i = w 2b+1–i for 1i2b for b1. We show that the language L b is not recognizable by any nondeterministic one-way k-head stack-counter automata if \left( {\begin{array}{*{20}c} k \\ 2 \\ \end{array} } \right)$$ " align="middle" border="0"> . As a corollary, we show that k+1 heads are better than k for one-way multihead stack-counter automata.  相似文献   

15.
We prove that the concept class of disjunctions cannot be pointwise approximated by linear combinations of any small set of arbitrary real-valued functions. That is, suppose that there exist functions f1, ?, fr\phi_{1}, \ldots , \phi_{r} : {− 1, 1}n → \mathbbR{\mathbb{R}} with the property that every disjunction f on n variables has $\|f - \sum\nolimits_{i=1}^{r} \alpha_{i}\phi _{i}\|_{\infty}\leq 1/3$\|f - \sum\nolimits_{i=1}^{r} \alpha_{i}\phi _{i}\|_{\infty}\leq 1/3 for some reals a1, ?, ar\alpha_{1}, \ldots , \alpha_{r}. We prove that then $r \geq exp \{\Omega(\sqrt{n})\}$r \geq exp \{\Omega(\sqrt{n})\}, which is tight. We prove an incomparable lower bound for the concept class of decision lists. For the concept class of majority functions, we obtain a lower bound of W(2n/n)\Omega(2^{n}/n) , which almost meets the trivial upper bound of 2n for any concept class. These lower bounds substantially strengthen and generalize the polynomial approximation lower bounds of Paturi (1992) and show that the regression-based agnostic learning algorithm of Kalai et al. (2005) is optimal.  相似文献   

16.
In this paper, we consider the fuzzy Sylvester matrix equation AX+XB=C,AX+XB=C, where A ? \mathbbRn ×nA\in {\mathbb{R}}^{n \times n} and B ? \mathbbRm ×mB\in {\mathbb{R}}^{m \times m} are crisp M-matrices, C is an n×mn\times m fuzzy matrix and X is unknown. We first transform this system to an (mn)×(mn)(mn)\times (mn) fuzzy system of linear equations. Then, we investigate the existence and uniqueness of a fuzzy solution to this system. We use the accelerated over-relaxation method to compute an approximate solution to this system. Some numerical experiments are given to illustrate the theoretical results.  相似文献   

17.
A set A is nontrivial for the linear-exponential-time class E=DTIME(2 lin ) if for any k≥1 there is a set B k ∈E such that B k is (p-m-)reducible to A and Bk ? DTIME(2k·n)B_{k} \not\in \mathrm{DTIME}(2^{k\cdot n}). I.e., intuitively, A is nontrivial for E if there are arbitrarily complex sets in E which can be reduced to A. Similarly, a set A is nontrivial for the polynomial-exponential-time class EXP=DTIME(2 poly ) if for any k≥1 there is a set [^(B)]k ? EXP\hat{B}_{k} \in \mathrm {EXP} such that [^(B)]k\hat{B}_{k} is reducible to A and [^(B)]k ? DTIME(2nk)\hat{B}_{k} \not\in \mathrm{DTIME}(2^{n^{k}}). We show that these notions are independent, namely, there are sets A 1 and A 2 in E such that A 1 is nontrivial for E but trivial for EXP and A 2 is nontrivial for EXP but trivial for E. In fact, the latter can be strengthened to show that there is a set A∈E which is weakly EXP-hard in the sense of Lutz (SIAM J. Comput. 24:1170–1189, 11) but E-trivial.  相似文献   

18.
We present in this paper an analysis of a semi-Lagrangian second order Backward Difference Formula combined with hp-finite element method to calculate the numerical solution of convection diffusion equations in ℝ2. Using mesh dependent norms, we prove that the a priori error estimate has two components: one corresponds to the approximation of the exact solution along the characteristic curves, which is O(Dt2+hm+1(1+\frac\mathopen|logh|Dt))O(\Delta t^{2}+h^{m+1}(1+\frac{\mathopen{|}\log h|}{\Delta t})); and the second, which is O(Dtp+|| [(u)\vec]-[(u)\vec]h||L)O(\Delta t^{p}+\| \vec{u}-\vec{u}_{h}\|_{L^{\infty}}), represents the error committed in the calculation of the characteristic curves. Here, m is the degree of the polynomials in the finite element space, [(u)\vec]\vec{u} is the velocity vector, [(u)\vec]h\vec{u}_{h} is the finite element approximation of [(u)\vec]\vec{u} and p denotes the order of the method employed to calculate the characteristics curves. Numerical examples support the validity of our estimates.  相似文献   

19.
A framework is presented for processing fuzzy sets for which the universe of discourse X = {x} is a separable Hilbert Space, which, in particular, may be a Euclidian Space. In a given application, X would constitute a feature space. The membership functions of sets in such X are then “membership functionals”, that is, mappings from a vector space to the real line. This paper considers the class Φ of fuzzy sets A, the membership functionals μ A of which belong to a Reproducing Kernel Hilbert Space (RKHS) F(X) of bounded analytic functionals on X, and satisfy the constraint . These functionals can be expanded in abstract power series in x, commonly known as Volterra functional series in x. Because of the one-to-one relationship between the fuzzy sets A and their respective μ A , one can process the sets A as objects using their μ A as intermediaries. Thus the structure of the uncertainty present in the fuzzy sets can be processed in a vector space without descending to the level of processing of vectors in the feature space as usually done in the literature in the field. Also, the framework allows one to integrate human and machine judgments in the definition of fuzzy sets; and to use concepts analogous to probabilistic concepts in assigning membership values to combinations of fuzzy sets. Some analytical and interpretive consequences of this approach are presented and discussed. A result of particular interest is the best approximation of a membership functional μ A in F(X) based on interpolation on a training set {(v i , u i ),i = 1, . . . , q} and under the positivity constraint. The optimal analytical solution comes out in the form of an Optimal Interpolative Neural Network (OINN) proposed by the author in 1990 for best approximation of pattern classification systems in a F(X) space setting. An example is briefly described of an application of this approach to the diagnosis of Alzheimer’s disease.  相似文献   

20.
Solving agreement problems deterministically, such as consensus and k-set agreement, in asynchronous distributed systems prone to an unbounded number of process failures has been shown to be impossible. To circumvent this impossibility, unreliable failure detectors for the crash failure model have been widely studied. These are oracles that provide information on failures. The exact nature of such information is defined by a set of abstract properties that a particular class of failure detectors satisfy. The weakest class of such failure detectors that allow to solve consensus is Ω. This paper considers failure detector classes from the literature that solve k-set agreement in the crash failure model, and studies their relative power. It shows that the family of failure detector classes (1 ≤ xn), and (0 ≤ y ≤ n), can be “added” to provide a failure detector of the class Ω z (1 ≤ z ≤ n, a generalization of Ω). It also characterizes the power of such an “addition”, namely, , can construct Ω z iff y + z > t, and can construct Ω z iff x + z > t + 1, where t is the maximum number of processes that can crash in a run. As an example, the paper shows that, while allows solving 2-set agreement (but not consensus) and allows solving t-set agreement (but not (t − 1)-set agreement), a system with failure detectors of both classes can solve consensus for any value of t. More generally, the paper studies the failure detector classes , and Ω z , and shows which reductions among these classes are possible and which are not. The paper also presents a message-passing Ω k -based k-set agreement protocol and shows that Ω k is not enough to solve (k − 1)-set agreement. In that sense, it can be seen as a step toward the characterization of the weakest failure detector class that allows solving the k-set agreement problem. An extended abstract of this paper has appeared in the proceedings of PODC 2006 [20]. This work has been supported partially by a grant from LAFMI (Franco-Mexican Lab in Computer Science), the European Network of Excellence ReSIST and PAPIIT-UNAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23