首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 934 毫秒
1.
±800 kV直流输电工程空气间隙海拔校正系数试验研究   总被引:5,自引:1,他引:4  
分别在0、1 970、2 245和3 723 m海拔地区开展了±800 kV直流输电线路真型尺寸模拟杆塔和换流站极母线空气间隙50%操作冲击放电特性对比试验研究。通过分析计算,给出了±800 kV高压直流工程高海拔地区直流线路和换流站典型空气间隙操作冲击放电电压的海拔校正系数;并讨论了高海拔地区空气间隙放电特性的校正方法。  相似文献   

2.
±800kV直流输电空气间隙外绝缘特性研究   总被引:9,自引:0,他引:9  
给出±800kV特高压直流输电工程线路杆塔和换流站直流场空气间隙操作冲击和雷电冲击放电特性的试验研究结果;讨论不同海拔高度下操作冲击放电电压的校正方法,并给出海拔校正系数;对±800kV直流输电杆塔和换流站最小典型间隙距离提出建议,为±800kV直流换流站及输电线路工程建设的设计提供了依据。  相似文献   

3.
超/特高压直流输电线路塔头间隙冲击放电特性研究   总被引:6,自引:2,他引:4  
目前国内外规划和建设了多个超/特高压直流输电工程,其中输电线路杆塔塔头的空气间隙距离是影响工程设计的重要参数之一。在工程设计中,既需要选择合适的间隙距离以耐受可能出现的各种过电压,保证系统安全稳定运行,又要尽可能减小塔头尺寸以降低工程造价。利用±1000kV模拟塔头进行试验,得到了±1000kV杆塔典型空气间隙的操作冲击和雷电冲击放电特性曲线,并与±500和±800kV杆塔塔头的空气间隙研究成果进行对比分析,同时结合750kV交流杆塔塔头和正方形塔窗的操作冲击特性进行了讨论和分析。试验结果表明:±500、±800和±1000kV杆塔塔头的50%放电电压与间隙距离的关系曲线具有良好的延续性;当间隙距离增加时,操作冲击放电特性曲线开始出现饱和的趋势,而雷电冲击电压则与间隙距离保持较好的线性关系;导线的尺寸和分裂形式以及均压环等对塔头空气间隙的放电特性影响较小。  相似文献   

4.
±800 kV同塔双回线路电压等级较高,且杆塔形状和杆塔尺寸较±500、±660 kV直流输电线路杆塔都有很大差别,因此其空气间隙的放电特性有不同特点。为选择合适的±800 kV同塔双回直流线路空气间隙距离值,对影响±800 kV同塔双回输电线路杆塔上、下层空气间隙冲击放电特性的因素进行了真型尺寸模拟试验研究。研究了下层塔身宽度对杆塔下层间隙操作冲击放电特性的影响,均压环尺寸对直流V串塔头空气间隙放电特性的影响,直流运行电压对塔头间隙冲击放电特性的影响,±800 kV同塔双回输电线路杆塔下横担对上层间隙操作冲击放电特性的影响,并校核了下横担到上导线距离减小后杆塔的耐雷性能。研究结果表明:原有的塔身宽度对间隙操作冲击放电影响的修正公式已不适用于±800 kV同塔双回直流线路塔头;均压环尺寸大小与放电电压正相关;导线直流电场对间隙的放电路径有明显影响,但对放电电压影响不大;杆塔上导线到下横担的间隙距离可适当减小,但间隙距离减小后,杆塔的反击耐雷性能及绕击耐雷性能都略有降低。该研究结果可用于指导±800 kV同塔双回输电工程的设计。  相似文献   

5.
雷明辉 《电工技术》2019,(24):94-95
文章通过模拟实验,对±800kV 同塔双回直流线路杆塔空气间隙放电特性的影响因素进行研究分析,结果显示,现有的同塔双回直流线路杆塔空气间隙放电特性影响塔身宽度计算公式,对于±800kV 同塔双回直流线路杆塔的实际情况并不适用,而均压环尺寸以及导线直流电场、杆塔导线至下横担间隙距离等,是影响±800kV 同塔双回直流线路杆塔空气间隙放电特性的主要因素。  相似文献   

6.
同塔双回±660kV直流输电工程直线塔布置型式在国内外尚属首次,其冲击放电特性与以往±500kV单回I串水平排列、±800kV单回V串水平排列时的冲击放电特性有很大差别。为解决我国宁东-山东同塔双回±660 kV直流工程杆塔空气间隙的选择和海拔修正问题,首先利用真型模拟塔头,对V型绝缘子串在不同夹角下的操作冲击和雷电冲击放电特性进行了试验研究,然后分别在低海拔地区(北京)和高海拔地区(西宁),对±660kV同塔双回直线塔头进行了冲击放电特性试验,得到了海拔2000m及以下地区的海拔校正系数。最后,结合宁东-山东直流输电工程的实际情况,在1.8pu操作过电压下,对于海拔1000m及以下地区,±660kV同塔双回塔头的上层空气间隙距离建议为4.8m,下层空气间隙距离建议为4.9m;当海拔为2000m时,这2个距离分别建议为5.4m和5.5m。  相似文献   

7.
云广±800kV直流线路仿真塔空气间隙操作冲击放电特性   总被引:1,自引:1,他引:0  
研究云广±800kV直流线路用仿真塔的空气间隙50%操作冲击放电特性,结果表明,云广±800kV输电线路的绝缘子采用V形串,操作冲击电压成为杆塔空气间隙尺寸的控制因素;V形绝缘子串直线杆塔空气间隙距离在海拔高度为1000m及以下、1500m和2000m的地区应分别不小于6.2m、6.7m和7.1m。  相似文献   

8.
在海拔2 100 m和50 m地区对±500 kV同塔双回线路杆塔空气间隙的操作冲击放电特性进行试验研究,在实验条件下,获得了上、下层间隙的50%放电电压曲线,验证了下横担的存在对上层空气间隙的操作冲击放电特性无明显影响。基于两种海拔高度试验结果对比,提出了海拔2 100 m及以下地区的海拔校正方法和校正系数,进而给出了当操作过电压标幺值取1.6时,不同海拔高度下所要求的杆塔上、下层空气间隙的最小允许距离。成果已用于指导溪洛渡右岸电站送电广东±500 kV同塔双回直流输电工程的外绝缘设计。  相似文献   

9.
青藏直流工程换流站交流侧外绝缘特性   总被引:3,自引:1,他引:2  
曹晶  陈勇  万启发  何宝龙  孟可风  戴敏 《高电压技术》2009,35(10):2411-2415
为获得我国青藏高海拔地区220kV换流站设计依据,结合我国青藏高海拔±500kV直流工程,在4000m左右高海拔地区,开展220kV换流站真型构架典型电极以及棒-板操作冲击、雷电冲击试验研究。利用升降法在2.5~4.0m间隙距离内给出换流站交流侧典型电极操作、雷电冲击放电特性曲线。讨论不同海拔高度下操作冲击和雷电冲击放电电压的校正方法,并给出海拔或大气校正因数。通过分析试验数据,推荐换流站交流侧软母线对构架最小空气间隙的选择方法。研究结果表明,在相同的间隙距离下,棒-板间隙的冲击放电电压较典型电极低,同时,在4000m海拔高度下,雷电过电压成为控制换流站构架尺寸的主导因素。  相似文献   

10.
750kV同塔双回输电线路空气间隙放电特性研究   总被引:17,自引:11,他引:6  
陈勇  孟刚  谢梁  万启发  谷定燮 《高电压技术》2008,34(10):2118-2123
为取得我国750 kV同塔双回输电线路的设计依据,结合我国西北电网公司即将建设的750 kV同塔双回输变电线路工程,试验研究了750 kV同塔双回线路真型塔空气间隙操作冲击(含长波前时间)、雷电冲击和工频电压。采用升降法获得了3~7 m距离的杆塔空气间隙操作冲击、雷电冲击放电特性曲线,采用闪络法获得了1~4 m距离杆塔空气间隙的工频放电特性曲线;研究了不同杆塔宽度对放电电压的影响。试验表明,操作冲击和工频放电电压随着杆塔宽度的增大而降低。通过分析提出了不同海拔高度750 kV同塔双回线路相地最小绝缘间隙推荐值,该结果接近IEC等国外类似试验,证明了其可比性和可靠性。  相似文献   

11.
《高电压技术》2021,47(5):1788-1795
随着分层接入800 kV特高压换流变网侧电压等级从750 kV上升到1 000 kV,特高压换流站对网侧设备的绝缘要求也随之升高,网侧1 000 kV空气间隙的优化,对控制阀厅长度、确保换流站安全可靠运行、降低换流站占地和减少工程成本有重要意义。该文对换流站低端阀厅网侧1 000 kV换流变区域内各种带电导体之间的空气间隙在长波前操作冲击电压进行了放电试验研究,得到了相应空气间隙的50%操作冲击放电电压试验曲线。根据换流站不同类型下的交流侧1 000 kV操作过电压计算结果,分析了相应情况下交流侧1 000 kV换流变区域空气间隙相对地和相间的50%操作冲击放电电压。根据空气间隙试验曲线和最大的相间和相地操作50%放电电压,得出换流站网侧关键空气间隙的取值。计算表明:套管均压环对阀厅墙的最小空气间隙为7.1m,套管均压环对阀厅墙压顶的最小空气间隙为6.6 m,套管均压环–避雷器均压环不被击穿的最小空气间隙为8.2 m,管母–分裂导线和管母–套管最小空气间隙均为7.8 m。研究结果对网侧1 000 kV空气间隙的选取具有指导意义。  相似文献   

12.
本文介绍±500kV高压直流输电线路仿真拉线杆塔空气间隙的直流、冲击和合成电压(即直流迭加操作冲击和直流迭加雷电冲击)放电特性的试验研究结果。对两种典型电极(棒—棒和棒—板间隙)的放电特性也作了相应的研究比较。  相似文献   

13.
在超/特高压输电工程的设计中,空气间隙的选择非常重要,可以影响输电线路中杆塔的尺寸,以及变电站或换流站中各种带电结构之间的距离。空气间隙的合理设计既关乎系统的安全稳定运行,又直接影响到工程的造价。一般情况下,与工频、直流或雷电过电压相比,耐受操作过电压所需的空气间隙最大,因此,杆塔和变电站或换流站中典型空气间隙的操作冲击放电特性是影响输电工程安全性和经济性的重要因素之一,也是超/特高压交直流输电工程设计的主要依据。操作电压下空气间隙的放电特性与电极的形状、电极间的距离、施加电压的波形等因素有关。通过对国内外空气间隙在操作冲击电压下的试验研究进行综述,包括各种典型间隙的操作冲击放电特性以及影响该特性的各种因素,从而为今后更加深入地研究操作冲击放电特性提供借鉴。  相似文献   

14.
空气间隙的操作冲击放电电压是特高压输电工程杆塔设计的关键参数。气象参数、均压环尺寸、导线形式、绝缘子串型、间隙距离、冲击电压波形参数等因素都会对杆塔空气间隙的操作冲击放电电压产生影响。该文基于±500kV~±1100kV的直流杆塔空气间隙的操作冲击放电电压数据,建立灰狼算法优化的Ada Boost-SVR预测模型。该模型以均压环尺寸、塔身宽度、间隙距离、空气温度、气压和相对湿度作为输入参数,杆塔空气间隙的50%放电电压(U_(50))作为输出参数。采用该文提出的模型,对不同均压环尺寸下的杆塔空气间隙的U_(50)进行计算分析。结果表明,采用上述模型的预测值与试验值基本吻合。最后,采用该预测模型计算了典型气象条件下的±1100k V和±800kV杆塔间隙的U50。该方法可以计算不同气象条件下(包括不同于样本的气象条件)杆塔间隙的50%操作冲击放电电压,为输变电工程空气间隙操作冲击放电电压的预测提供了一种新的思路。  相似文献   

15.
三相导线垂直排列布置方式的500kV紧凑型输电线路杆塔空气间隙的放电特性较传统紧凑型线路有很大的不同,有必要通过试验对其空气间隙距离进行校核。本文首先分析了500kV垂直排列紧凑型线路塔头的初步设计依据,然后开展了模拟塔头的冲击放电特性试验及带电作业操作冲击放电试验研究。结果表明按传统500kV紧凑型线路的绝缘配合原则初步设计的垂直排列紧凑型线路杆塔的空气间隙距离可以满足安全可靠性要求。文章最后给出了带电作业时应保持的头顶-上横担和头顶-上方导线最小安全距离。研究成果可为500kV垂直排列紧凑型线路工程的设计提供参考,为相关人员带电作业的安全提供保证。  相似文献   

16.
万启发  霍锋  谢梁  刘云鹏  徐涛 《高电压技术》2012,38(10):2499-2505
为获得长空气间隙在不同间隙距离、不同电压类型、不同电极结构下的放电规律,介绍了国内外长空气间隙放电特性研究的代表性成果,分析了棒-板和棒-棒间隙在不同间隙距离、不同冲击电压波前时间下的放电特性,给出了典型的放电特性曲线。对美国、日本和中国开展的输变电杆塔间隙试验结果进行了分析,介绍了线路和变电站相-地和导线相间空气间隙试验结果,对比了不同塔型结构条件和波形条件的影响。研究表明随间隙距离的增大,棒板间隙临界放电电压对应的波前时间逐渐增大;塔宽对杆塔间隙操作冲击下的放电电压有明显的影响;随着操作冲击电压的升高,海拔对操作冲击放电电压降低的作用减小。该综述是对目前国际上典型间隙和输变电间隙放电特性研究成果的总体分析,可为绝缘设计提供依据。  相似文献   

17.
国内外的文献资料表明空气间隙的放电特性在纯操作波和直流预电压情况下有很大的差别,这对高压输电线路塔头空气间隙的选择可能会有影响,因此在我国直流特高压杆塔空气间隙设计中需要对导线上直流预电压的影响进行研究。通过真型尺寸模拟塔头空气间隙放电试验,研究了特高压线路杆塔空气间隙在直流预电压叠加操作冲击下的放电特性,得到了叠加电压的试验数据。通过与纯操作冲击放电特性的比较,发现叠加电压情况下杆塔空气间隙的放电电压比纯操作冲击情况下高2%~4%,因此从安全的角度考虑,在特高压杆塔空气间隙设计中,采用纯操作冲击电压试验数据是可行的。  相似文献   

18.
±500kV直流拉线杆塔空气间隙放电特性的研究   总被引:3,自引:1,他引:3  
本文介绍了±500 kV葛洲坝—上海(南桥)直流输电线路拉线杆塔空气间隙叠加试验(即直流叠加操作冲击和直流叠加雷电冲击)的研究结果。  相似文献   

19.
±1100 kV直流是一个新的电压等级,杆塔间隙距离的选择是保证工程可靠和经济的关键技术之一,我国正在建设的±1100 kV输电线路超过3000 km,并且途经高海拔地区,为解决杆塔间隙放电电压的海拔校正问题,在国内两个不同海拔的试验基地,采用±1100 kV真型尺寸模拟杆塔,进行了空气间隙冲击放电试验,获得了相应的操作冲击、雷电冲击放电电压,并分析了不同海拔下操作冲击和雷电冲击放电电压的分散性;其次,利用典型的棒板间隙操作冲击放电公式,分析了间隙距离6~11 m范围的间隙系数;然后,结合IEC 60071-2规定的海拔校正方法,分析了±1100 kV杆塔操作冲击和雷电冲击的海拔校正系数,并计算得到了操作冲击的电压修正因数m。最后结合昌吉—古泉±1100 kV工程的过电压计算结果,推荐了海拔3000 m及以下地区±1100 kV输电线路直流电压和操作冲击电压所需的最小间隙距离。结果表明:未发现海拔的变化对间隙放电电压的相对标准偏差有明显影响,在1.57 pu操作过电压下,海拔1000 m时,±1100 kV输电线路杆塔操作冲击所需的最小间隙距离为8.9 m,海拔为3000 m时,最小间隙距离为9.8 m。直流电压要求的间隙距离较小,海拔3000 m时为4.2 m。  相似文献   

20.
1000kV线路杆塔空气间隙距离选择   总被引:3,自引:2,他引:3  
特高压(UHV)线路空气间隙距离研究是UHV线路工程设计的基本参数,而前苏联、日本的相关工程参数也与我国情况不同。为此介绍了中国晋南荆1000kV输电线路杆塔空气间隙距离选择的原则、方法和结果。由于塔宽和试验电压波前时间对特高压线路杆塔空气间隙的放电电压有明显的影响,故采用特高压真型杆塔进行空气间隙的放电电压试验,操作冲击试验电压的波前时间为1000μs,和特高压线路操作过电压的实际波前时间比较接近。工作电压下空气间隙距离的选择考虑了最大工作电压、100a一遇的最大风速、多间隙并联对放电电压的影响并取闪络概率为0.13%,得到海拔500、1000、1500m时工作电压下的最小空气间隙距离分别为2.7、2.9、3.1m。操作冲击下空气间隙距离的选择考虑了沿线最大的统计(2%)操作过电压水平为1.7p.u.、操作过电压波前时间取1000μs、多间隙并联对放电电压的影响、计算风速为0.5倍最大风速、闪络概率为0.13%,得到海拔500、1000、1500m时的最小空气间隙距离中相分别为6.7、7.2、7.7m,边相分别为5.9、6.2、6.4m。试验结果表明,边相导线对杆塔的空气间隙距离受工作电压控制,中相导线对杆塔的空气间隙距离受操作冲击电压控制。雷电冲击下的空气间隙距离对杆塔塔头尺寸不起控制作用,可以不规定雷电冲击下的空气间隙距离要求值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号