首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《电池》2020,(1)
采用十六烷基三甲基溴化铵(CTAB)对制备的TiNb_2O_7(TNO)进行改性,采用溶剂热法制备多孔球形TNO/C复合材料。TNO和TNO/C的峰形相近,TNO/C的XRD图中无其他杂峰,表明碳为无定型态;与纯TNO相比,TNO/C的微观球体直径相对较小、孔隙均匀明显。以10 C在1. 0~2. 5 V充放电,TNO/C电极的首次放电比容量为228. 2 m Ah/g,经过1 000次循环,容量保持率为77%,库仑效率在100%左右。  相似文献   

2.
为了提高LiFePO4的充放电性能,通过高温固相法合成了Li0.98M0.02FePO4/C(M=Cr、W)及Li1.03M0.02Fe0.98PO4/C(M=Zr、Ni)两类橄榄石型正极材料。运用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、能量散射X射线谱(EDX)和电化学测试对合成产物的晶体结构、颗粒形貌和电化学性能进行了表征。结果表明:Li0.98Cr0.02FePO4/C的放电比容量最高达到157.3mAh/g,且多次循环后容量几乎无衰减;在大电流充放电倍率下,材料依然能保持优良的循环性能,Li0.98W0.02FePO4/C首次放电比容量可达130.2mAh/g,10次循环后容量保持率为97%。离子掺杂和碳包覆改性能有效地提高LiFePO4的比容量和循环性能。  相似文献   

3.
张海洋  沈凯  徐庆宇 《电池工业》2012,17(3):157-160
采用高温固相法分两个步骤制备碳包覆LiFePO4/C样品,通过XRD、TEM及电化学性能测试对样品进行检测分析,显示样品为纯相LiFePO4,颗粒均匀且包覆较好的碳包覆结构,在1.44C倍率下的首次放电比容量为128mAh/g,100次循环后的放电比容量为120mAh/g,保持率为93.8%,具有较好的充放电循环性能。  相似文献   

4.
以四异丙氧基钛酸(TTIP)作为锂离子电池负极材料TiO2合成的钛源,草酸为防止TTIP水解的抑制剂,聚乙烯醇(PVA)为碳源,采用喷雾干燥法结合固相烧结的方法制备出微米级球型TiO2和碳包覆TiO2。利用热重-差热分析(TG-DTA)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和电化学方法对其进行物理表征和电化学性能研究。测试结果表明,400℃下煅烧4 h的TiO2样品为锐钛矿晶型,具有相对最高的比容量,0.1 C电流密度下首圈放电比容量为225.5 mAh/g,充放电效率为95.3%,在不同电流密度下35圈循环后,放电比容量仍可以达到190.3mAh/g,比容量保持率为84.4%。原料中添加10%(质量分数)PVA制备的碳包覆TiO2,在10 C大电流密度下放电比容量提高至114.7 mAh/g,比没有碳包覆的TiO2提高约26.6%,经过20次充放电循环后放电比容量仍为102.3 mAh/g,容量保持率为89.2%。碳包覆TiO2在大电流密度下表现出较佳的比容量及循环性能。  相似文献   

5.
通过碳热还原,合成了不同钒掺杂量(x)的球形碳包覆磷酸铁锂(LiFePO4/C)材料LiFe1-xVxPO4/C。循环伏安和恒流充放电测试表明,适当的钒掺杂能改善材料的电化学性能。x=0.05的材料,电化学性能较好,以0.1 C在2.5~4.2 V充放电,首次放电比容量为151.1 mAh/g,10.0 C倍率时,放电比容量仍能维持在104.4 mAh/g左右。  相似文献   

6.
通过水热-碳热还原法,合成了高密度球形LiFePO_4/C材料。通过扫描电子显微镜(SEM)和振实密度测试发现,LiFePO_4/C的振实密度得到显著提高,达到1.553g/cm~3。通过恒流充放电测试表明,适当的碳包覆能改善LiFePO_4材料的电化学性能。在0.1C下,2.5~4.2V进行充放电,首次放电比容量为137.63mAh/g,10C时放电比容量维持在76.71mAh/g左右。  相似文献   

7.
通过改进的乳液聚合法制备氧化物溶胶,再利用热碳还原技术合成Sn2Sb@C核壳结构负极材料.β-SnSb金属间化合物和Sn单质形成Sn2Sb@C的疏松内核,表面被一层无定形碳包覆.由于疏松的内核结构和外层包覆的无定形碳壳层可缓冲电极充放电过程中的体积变化,核壳复合材料表现出稳定的循环性能.以400 mA/g的电流在0.001 ~2.000 V恒流循环,首次充、放电比容量分别为890 mAh/g和1 375 mAh/g,第30次循环的放电比容量为572 mAh/g.  相似文献   

8.
碳包覆硅/碳复合材料的制备与性能研究   总被引:1,自引:0,他引:1  
为提高锂离子电池商容量Si/C复合负极材料的电化学性能,采用喷雾干燥法制备了核壳结构的碳包覆Si/C复合材料.碳包覆Si/C复合材料为近球形颗粒,形貌规整,粒度分布均匀,呈正态分布,其物相结构和嵌脱锂的电化学反应与Si/C复合材料保持一致.碳包覆后,减小了充放电过程中复合材料电极的极化,电压滞后现象得到了显著的改善.碳包覆Si/C复合材料的最大放电比容量为512 mAh/g,略低于包覆前的材料,但循环稳定性大大提高,50次循环后的容量保持率为96%.  相似文献   

9.
以共沉淀法制备LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2为基体,通过机械球磨制备石墨烯包覆的LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2正极材料。用SEM、XRD和电化学性能测试研究材料的形貌、晶体结构和电化学性能。制备的石墨烯包覆LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2正极材料具有较好的倍率特性和循环性能:200℃热处理的1.0%石墨烯包覆样品,在3.0~4.3 V充放电,4.0 C放电比容量达到144.3 mAh/g,比基体材料提高16.1%;以1.0 C循环100次的放电比容量达到151.2 mAh/g,循环性能良好。  相似文献   

10.
通过碳热还原法,以纳米碳、改性天然石墨为碳源还原SnO2,并用沥青进行二次碳包覆,制备了锂离子电池负极复合材料Sn/C。对样品进行了XRD、SEM分析及充放电性能测试。SnO2被过量的碳还原,形成粒径为1~2μm的金属Sn球。以改性天然石墨为碳源制备的样品,首次充电(脱锂)、放电(嵌锂)比容量分别为412.4 mAh/g和591.1 mAh/g;第20次循环的充电比容量为342.1 mAh/g,库仑效率从第2次循环开始均在97.0%以上。  相似文献   

11.
LiFePO_4锂离子电池的低温性能   总被引:2,自引:1,他引:1  
采用循环伏安和充放电测试研究了LiFePO4和碳负极材料的低温性能.LiFePO4在25℃时的0.1 C和0.3 C放电比容量分别为156 mAh/g和148 mAh/g,在-20℃时分别为91 mAh/g和65 mAh/g.碳负极材料在-20℃下以0.1 C和0.3 C放电,几乎可放出25℃时的全部比容量.约330 mAh/g.LiFePO4是LiFePO4锂离子电池低温容量的主要影响因素.  相似文献   

12.
采用高温固相法对Li4Ti5O12材料进行二元金属掺杂改性。经过改性后的样品首次放电比容量可达183.7 mAh/g,1 C下,Al、Zn掺杂比例均为0.05的样品放电比容量为157.9 mAh/g,循环20次后比容量为153.6 mAh/g,容量保持率达97.3%。采用室温恒流充放电、交流阻抗、循环伏安等方法分析产物电化学性能。  相似文献   

13.
采用湿化学法-微波法制备了Li2FeSiO4/C正极材料。通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、透射电子显微镜法(TEM)、X射线能谱(EDS)和恒流充放电测试,对样品结构、形貌、组成和电化学性能进行了表征和分析。结果表明该法可以快速高效制备出Li2FeSiO4/C材料;在640 W功率下微波处理6 min,获得了晶粒细小、均匀和良好碳包覆的Li2FeSiO4,该产物具有较高的放电比容量和良好的循环性能。室温下以1/16 C进行充放电,首次放电比容量为120.7 mAh/g,10次循环后放电比容量保持为100.2 mAh/g。  相似文献   

14.
采用高温固相法合成了碳包覆的氟掺杂磷酸锰锂正极材料,通过X射线衍射光谱法(XRD)、透射电子显微镜法(TEM)和电化学测试对材料进行了表征。所制备的材料平均粒径约为70 nm,碳在材料表面包覆完整,包覆厚度约为2~4 nm。制备的LiMn(PO4)0.985F0.045正极材料具有最佳的电化学性能,在0.2 C电流充放电条件下首次放电比容量112.7 mAh/g,经过20周的循环后容量基本没有下降,在2.0 C恒流放电时,放电比容量仍然保持在65 mAh/g左右,具有较好的倍率性能。  相似文献   

15.
采用葡萄糖/碳纳米管对实验室制备的钛酸锂进行包覆改性,并选用商业化钛酸锂材料LTO-KDBR做对比,通过对材料的结构分析和电化学性能测试,为钛酸锂材料的产业化应用提供理论依据和指导。XRD测试表明实验室制备的钛酸锂材料LTO和LTO/C-4%与商业化产品LTO-KDBR的Li_4Ti_5O_(12)晶体结构相近,没有显著差别。SEM分析表明LTO和LTO/C-4%材料的颗粒均一性较差,存在2~3μm的较大颗粒,而LTO-KDBR材料为200~300 nm一次颗粒团聚而成。在10 C倍率下,LTO-KDBR的放电比容量为141.60 mAh/g,显著高于LTO和LTO/C-4%的比容量85.93和126.49 mAh/g。采用LTO-KDBR制备的18650电池,充放电循环500次后的放电容量保持率为88.7%,表明钛酸锂材料作为一种新型负极材料具有较好的大倍率充放电性能和长循环寿命。  相似文献   

16.
王雷  唐致远  阮艳莉  胡冉 《电源技术》2006,30(7):549-551,593
为解决锂离子蓄电池新型正极材料LiFePO4的低导电率的问题,采用高温固相法合成出包覆碳并掺杂了少量Mg2 的LiFePO4样品。采用X射线衍射、充放电测试、交流阻抗和循环伏安测试方法,深入研究了包覆碳后Mg2 掺杂对LiFePO4结构和电化学性能的影响。研究结果表明,包覆碳后掺杂少量的Mg2 能进一步提高LiFePO4的导电性,从而提高材料的比容量和循环性能。不同的Mg2 离子掺杂量(x=0.02、0.04、0.06、0.08)里,Li0.94Mg0.06FePO4的电化学性能最佳,以0.1C充放电,首次放电比容量为141.9mAh/g,充放电效率为93.1%;循环50次后,容量几乎没有衰减。  相似文献   

17.
采用溶胶凝胶法制备尖晶石型高电压正极材料LiNi_(0.5)Mn_(1.5)O_4,并掺杂F-与之对比。分别采用X射线衍射仪、电子扫描显微镜、热重分析仪、电化学工作站和充放电测试仪对合成材料的物相、形貌和电化学性能进行表征。结果表明,0.5C倍率下LiNi_(0.5)Mn_(1.5)O_4首次放电比容量高达141.6 mAh/g,接近于理论比容量146.7 mAh/g。提高倍率40次循环后,5C比容量仍有111.8 mAh/g,而F-掺杂样品仅有92 mAh/g。然后从5C返回到1C,比容量为129.9 mAh/g,与1C初始容量相比,容量保持率高达96.4%,LiNi_(0.5)Mn_(1.5)O_4显示出更加优异的倍率循环性能。  相似文献   

18.
文倩倩  贾梦秋 《电池》2013,43(1):18-21
以水、乙醇和乙二醇为溶剂,絮状聚乙烯醇(PVA)为还原剂和碳包覆剂,用水热还原法制备橄榄石型碳包覆磷酸铁锂(LiFePO4/C).用XRD、SEM和充放电等测试,对产物的晶体结构、微观形貌及电化学性能进行研究;通过Wu方法计算产物的表面自由能.LiFePO4/C具有单一橄榄石型晶体结构,以乙二醇为溶剂合成的产物粒径细小,为300 ~ 400 nm的均匀分布球状体,表面自由能色散分量(γds)与极性分量(γps)之比γds/γps最大,炭包覆性和导电率最好.在2.2 ~ 4.4 V充放电,0.1C首次放电比容量达164.95 mAh/g,第50次循环的容量保持率为96%;10 C放电比容量为125 mAh/g,以15 C放电,放电比容量为85 mAh/g,循环10次,放电容量保持率都在99%以上.  相似文献   

19.
包覆改性是钴酸锂(LiCoO_2)正极材料的重点研究方向之一。采用固相烧结法,在不同烧结工艺的条件下对LiCoO_2进行纳米级钛白粉、氢氧化铝和氢氧化镁表面复合包覆。在充放电3.0~4.35 V电压区间,以0.5 C、1.0 C放电,复合包覆改性钴酸锂的比容量、平台率和循环性能都有明显的提高。在980℃/12 h条件下包覆改性的钴酸锂,获得最优的电化学性能,比容量可达172.8 mAh/g,100周循环后容量衰减只有6.2%。  相似文献   

20.
用机械球磨-热解法制备了碳包覆NbSn2贮锂材料。通过X射线衍射光谱法(XRD)、透射电子显微镜法(TEM)和电化学测试对材料进行了表征,用非原位XRD测试研究了材料的反应机理。所制备的材料粒径大小分布在0.5~1.5μm,材料表面碳的包覆较均匀,包覆厚度为30~60 nm。在充放电电压1.5~0 V内,初始可逆充电比容量为701 mAh/g,经过20周的循环后,充电比容量仍然保持为524 mAh/g。与没有碳包覆的铌锡负极材料相比,其贮锂容量和循环性能都大大提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号