首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
传统的电压型超导储能系统采用电压型换流器和斩波器分别进行建模和控制的方法,这种控制方式未考虑两者之间的相互影响,协调性能较差.文中建立了电压型超导储能系统的整体数学模型,并在此基础上提出了基于李亚普诺夫直接法的统一非线性控制方法.这种控制方法使得系统在大信号干扰下的稳定性大大提高,同时由于将电压型换流器和斩波器视为一个整体进行控制,两者的协调性得以加强,因此可以采用更小的直流连接电容连接.在斩波器的脉宽调制控制中,采用了载波移相法,提高了等效开关频率,有利于开关管功率的平均分配.系统仿真证明了该控制策略的有效性.  相似文献   

2.
超导储能用电流调节器充放电数学模型及其控制系统   总被引:1,自引:0,他引:1  
电压型超导储能系统由电压源换流器和斩波器构成.电压源换流器负责与系统进行有功和无功的交换,而斩波器则用来实现对超导磁体的充放电,以满足系统有功功率的要求.中科院电工所提出了一个带隔离变压器的双向DC/DC形式的电流调节器,实现了斩波器的功能.本文用状态空间平均法建立了电流调节器的充放电小信号数学模型,并在此基础上分别设计了电流调节器的充放电控制器,其中充电控制器采用滞环 PI调节的方式.针对放电控制,设计了两种三环控制器,并对其进行了分析比较.实验结果证明了该控制器控制性能的有效性.  相似文献   

3.
针对高温超导磁体充、放电对超导储能系统斩波单元稳定运行的要求,对超导磁储能电压型功率调节系统进行了研究,采用状态空间平均法建立斩波器充电及放电模式的数学模型,分析斩波器充电、续流及放电的工作原理,并设计斩波器的电流闭环反馈控制方法。基于第2代高温超导线圈,考虑到线圈电感量及其限流保护,应用Matlab软件进行了斩波器充电和放电工作模式仿真,并且搭建了一个超导储能的斩波器试验系统,应用DSP2812处理器实现对超导磁体充、放电控制。磁体电压、磁体电流及直流母线电流仿真与实验波形吻合较好,所应用的斩波器数学模型及其控制方法能实现对超导磁体快速稳定地充、放电和续流。  相似文献   

4.
在500 kVA超导储能系统研制中,为了选择合适的功率变换电路拓扑,使系统具有更高的电压等级和灵活性,比较了近年来国内外采用的几种电压型换流器。针对超导储能特点及其在电力系统中承担电能质量调节的要求,分析了传统2电平桥式换流电路、中点钳位型多电平换流电路以及级联型多电平换流电路的性能。分析结果表明,对于大功率超导储能装置,级联型多电平换流电路在电压等级、控制精度及结构灵活等方面均优于另外2种换流器拓扑,采用级联型换流器的超导储能系统实现了模块化构造,可以实现系统冗余及容错运行。仿真结果证实模块化超导储能系统能够在较低工作频率下精确控制电压质量。  相似文献   

5.
针对超导储能装置中基于电压源型变流器的功率调节系统,给出了基于电压源型变流器(VSC)和斩波器(Chopper)的超导储能(SMES)装置功率调节系统(PCS)的主电路拓扑结构和使用占空比表达的PCS低频数学模型,提出了使用非线性变换实现状态方程线性化的方法,通过状态方程的线性化实现有功功率、无功功率及直流侧电压解耦控制的系统设计。Matlab/Simulink环境下系统仿真结果表明,设计的PCS系统控制器对阶跃和正弦波功率指令具有很强的跟踪能力,且直流侧电压有很强的抗干扰能力。  相似文献   

6.
为实现超导储能装置(SMES-Superconducting Magnetic Energy Storage)与输配电网之间的协调作用,达到提高电网输送容量、暂态稳定性和电压稳定性,提高配电网电能质量的目的.根据SMES的结构特点,结合目前大功率电力电子器件以及电路拓扑的发展趋势,设计了一台三单相H桥分立控制的电压型换流器(VSI-Voltage source inverter)及其控制系统平台.该电压型换流器采用三相器件独立运行结构,控制系统采用数字信号处理器(DSP-Digital Signal Processing)设计,在功能上实现了对串联于电力线路的注入电压幅值和相位的灵活控制,最后给出了一台20 kW电压型换流器原理样机对母线电压补偿功能的试验结果,试验结果表明,该电压型换流器可以满足超导储能系统的需要.  相似文献   

7.
为实现超导储能装置(SMES-Superconducting Magnetic Energy Storage)与输配电网之间的协调作用,达到提高电网输送容量、暂态稳定性和电压稳定性,提高配电网电能质量的目的。根据SMES的结构特点,结合目前大功率电力电子器件以及电路拓扑的发展趋势,设计了一台三单相H桥分立控制的电压型换流器(VSI-Voltage source inverter)及其控制系统平台。该电压型换流器采用三相器件独立运行结构,控制系统采用数字信号处理器(DSP-Digital Signal Processing)设计,在功能上实现了对串联于电力线路的注入电压幅值和相位的灵活控制,最后给出了一台20 kW电压型换流器原理样机对母线电压补偿功能的试验结果,试验结果表明,该电压型换流器可以满足超导储能系统的需要。  相似文献   

8.
王进武  雷勇  刘晖  何平 《现代电力》2021,38(5):546-553
超导磁储能(superconductivity magnetic energy storage,SMES)系统通过变流器来实现电网与超导磁体的功率交换。但传统的储能变流器存在输出电压范围有限以及桥臂上下开关易受干扰造成直通而损坏的问题。为实现超导磁储能系统的安全稳定运行,提出了基于双向准Z源变流器(quasi-Z source converter,QZSC)的超导磁储能系统,并针对QZSC-SMES系统的非线性、强耦合特点,在QZSC-SMES系统的交流侧变流器和直流侧斩波器采用基于欧拉?拉格朗日(Euler-Lagrange,E-L)模型的无源控制策略。仿真结果验证了所提QZSC-SMES拓扑及其控制策略的有效性:系统可以快速准确跟踪有功无功指令,相比传统PI控制,系统具有更低的并网谐波含量、更好的动态性能和更强的鲁棒性。  相似文献   

9.
以电流源型和电压源型变流器作为研究对象,探讨了可对电流源型变流器和电压源型变流器交流侧电流的幅值和相位进行有效控制的SPWM开关策略。在此基础上,研究了能够按照系统要求对2种超导磁储能装置进行有功和无功功率调节的功率控制方法。仿真结果表明所研究的功率调节方法能够在四象限内进行超导磁储能装置输入输出有功和无功功率的快速解耦控制,仿真同时验证了所研究的功率控制策略的正确性和可行性。  相似文献   

10.
应用超导储能系统(SMES) 对提高风电场的暂态稳定性进行了研究。在深入研究超导储能系统运行原理的基础上,建立了基于电压型换流器(VSC)的超导储能系统模型,实现了有功功率和无功功率的解耦控制,并提出了有功、无功功率综合控制策略。利用PSCAD/EMTDC软件进行了仿真计算,结果说明超导储能系统不但能够在风速波动时平滑风电场的功率输出,而且能够提高风电系统的暂态稳定性。  相似文献   

11.
双馈型风力发电机面临能量输出不稳定和低电压穿越能力弱2个主要问题。为了同时解决这2个问题,提出了一种集成超导储能系统和电流型串联网侧变流器的双馈型风力发电系统。该系统利用超导磁体作为能量储存和缓冲环节,提高了能量输出的稳定性;利用电流型串联网侧变流器实现了对定子电压的保护,提升了双馈型风力发电机的低电压穿越能力。仿真结果证明了该拓扑结构及其控制策略的有效性。  相似文献   

12.
超导磁储磁能(SMES)装置的超导磁体通过变流器与电网连接,为了减小装置向系统注入的谐波电流,各种改进的脉宽调制(PWM)技术被用于变流器的控制。该文分别用正弦波和三角波作为调制和载波信号,提出一种可用于电流源型变流器的实时电流控制的新型PWM开关策略,并在此基础上研究了能够按照系统要求对电流源型SMES独立地进行有功和无功功率四象限调节的实时功率控制方法。仿真结果表明,该开关策略不仅能够快速改变变流器交流侧电流的幅值和相位,有效降低变流器交流侧电流中的谐波含量,而且能够提高SMES装置的功率响应特性。同时该方法还具有控制策略简单,工程实现容易的特点。  相似文献   

13.
This paper presents a fuzzy logic-controlled superconducting magnetic energy storage (SMES) for the enhancement of transient stability in a multi-machine power system. The control scheme of SMES is based on a pulse width modulation (PWM) voltage source converter (VSC) and a two-quadrant DC–DC chopper using gate-turn-off (GTO) thyristor. Total kinetic energy deviation (TKED) of the synchronous generators is used as the fuzzy input for SMES control. Communication delays introduced in online calculation of the TKED are considered for the actual analysis of transient stability. Global positioning system (GPS) is proposed for the practical implementation of the calculation of the TKED. Simulation results of balanced fault at different points in a multi-machine power system show that the proposed fuzzy logic-controlled SMES is an effective device for transient stability enhancement of multi-machine power system. Moreover, the transient stability performance is effected by the communication delay.  相似文献   

14.
为实现高温超导储能系统(SMES)对电网功率波动的动态补偿,采用第1代铋系和第2代钇钡铜氧高温超导材料,设计并构建了过冷液氮温区运行、千焦级容量的混合高温超导储能系统。应用数字信号处理器和微控制器的双处理器形式,设计了LCL滤波的电压型SMES变流器的功率控制系统电路,基于空间矢量脉冲调制法(SVPWM),提出了SMES变流器对系统功率补偿的控制方法,并进行控制软件编程,实现对并网侧功率的动态监测和补偿策略的实时计算。最后应用SMES在一条200km输电线路上进行并网动模试验,针对电网负荷变化产生的功率波动状态,实现了毫秒级内对电力系统的快速功率输出和波动抑制,验证了超导储能系统对电网瞬时功率补偿策略和功率补偿变流装置的有效性。  相似文献   

15.
针对非线性冲击负载引起的电压凹陷大、电网谐波比重大和功率因数低等电能质量问题,提出了一种基于超导储能技术的三相电压源型变流器(voltage source converter,VSC)反馈伪线性化控制方法。在三相VSC数学模型中使用逆系统,达到直流电容、电压和无功电流的完全解耦,并构造出伪线性系统。设计了斩波器的电流调节控制系统,充分发挥了超导储能的续流能力。设计了内电流环控制器,解决了诸多电能质量问题,并对VSC容量进行最优整定。  相似文献   

16.
桥式直接交交斩波变换器及换流策略研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为解决交流斩波功率变换器中双向全控电力电子开关结构复杂、换流过程繁琐的问题,研究了一种新颖的桥式直接交交斩波变换器,并提出了与之相适应的非互补控制换流策略。首先通过改进变换器结构和功率流向,取代了单管组合式双向全控开关的设计方案,简化了多路驱动电路间的隔离设计,使线路分布参数的影响较小,开关器件与驱动电路的一致性好,成本降低。换流策略设计了有源、续流和死区3种工作模式以及多种性质负载条件下的换流路径,消除了输出电压失控区间,且不使用电流极性检测环节。最后设计了功能样机,在多种负载条件下进行了性能测试。实验结果验证了方案的有效性。  相似文献   

17.
本文介绍一种基于超导储能(SMES)的综合电能质量调节装置,阐明了装置的电路结构和工作原理,通过实验验证了该装置结构和控制的有效性,分析了主电路参数的设计方法.  相似文献   

18.
新型模块化多电平变流器(modular multilevelconverter,MMC)通常采用双闭环矢量控制策略,针对该方法存在的需调整控制参数较多、动态响应慢等问题,研究MMC的直接功率控制策略及电容电压平衡方法。首先,将现有的桥臂模块电压排序法与参考信号中叠加平均值控制量的方法进行综合,控制电容电压平衡;然后,在桥臂内电容电压相互平衡的基础上,利用双闭环PI调节器控制桥臂间各电容电压保持一致并跟踪给定,使电压波动范围明显减小,提高变流器输出波形质量;最后,将变流器虚拟磁链直接功率控制策略应用于MMC。研究该种拓扑结构下的功率估计方法,并利用Matlab对所设计系统进行仿真验证,结果表明所提控制方法正确、有效。  相似文献   

19.
针对风电场并网电压源直流输电系统,在αβ坐标系下VSC-HVDC系统离散化数学模型基础上,结合瞬时功率理论和空间矢量脉冲宽度调制,提出了一种适用于VSC-HVDC系统的新开关表的直接功率控制。其中,风电场侧采用定有功功率和无功功率,电网侧采用定直流电压和无功功率,利用MATLAB/Simulink搭建相应的仿真模型,通过对有功、无功阶跃突变工况的仿真分析,验证了该方案的有效性和可行性,为风电场并网电压源高压直流输电系统提供了一种可行的控制方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号