首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
《电网技术》2021,45(3):855-862,中插2-中插3
为提高风电功率预测的精度,提出了一种基于互补集合经验模态分解(complementaryensembleempiricalmode decomposition,CEEMD)、缎蓝园丁鸟优化算法(satinbower birdoptimizationalgorithm,SBO)及最小二乘支持向量回归(leastsquaressupportvectorregression,LSSVR)模型的超短期风电功率组合预测方法。针对风电序列的随机波动性,采用CEEMD对风电功率序列进行分解,将分解得到的不同特征尺度的各分量作为LSSVR模型的训练输入量。引入SBO算法对LSSVR的正则化参数与核函数宽度进行优化,建立各分量的预测模型,将各分量的预测输出值叠加得到最终的风电功率预测值。所提CEEMD-SBO-LSSVR组合预测方法不仅有效降低了预测的复杂度,而且保证原始风电序列经模态分解处理后具有小的重构误差。仿真结果表明,与其他预测模型相比,所提方法具有较高的超短期风电功率预测精度。  相似文献   

2.
提出一种基于完备总体经验模态分解(CEEMD)和随机森林(RF)算法的短期风电功率预测模型。首先,采用CEEMD算法将风电功率原始序列分解为若干特征互异的模态函数,计算各模态函数样本熵并将样本熵值相近的模态函数合并为新的分量。同时,采用偏自相关函数对不同分量确定输入变量集合,避免了人工经验选取的不足。然后,对每一分量建立随机森林预测模型,将各分量预测结果叠加获得短期风电功率预测值。最后,通过算例验证了所提模型的有效性。  相似文献   

3.
为了提高风电功率预测精度,保证风能的有效利用,提出一种基于变分模态分解和改进灰狼算法优化支持向量机的风电功率超短期组合预测模型。采用变分模态分解将风电功率序列分解为一系列具有不同中心频率的模态分量以降低其随机性,将各分量分别建立支持向量机预测模型,并采用改进灰狼算法对其参数寻优,将各分量的预测值叠加重构得到最终的预测值。实例仿真表明,所提的组合预测模型与其他预测模型相比具有更高的预测精度。  相似文献   

4.
风电功率的准确预测是减少风电接入电网的不良影响的必要前提。然而风电功率序列在时间上和空间上表现出非平稳性使其难以准确预测,因此提出一种基于集合经验模态分解(EEMD)和深浅层学习组合的短期风电功率组合预测方法,其中深度学习使用稀疏自编码器(SAE)而浅层学习则使用BP神经网络,从而建立EEMD-SAE-BP预测模型。该模型先用EEMD将风电功率原始序列分解为一系列按不同时间尺度分布的分量;然后针对分量中的高频分量建立SAE预测模型,对低频分量则用BP网络建立预测模型;最后将各子序列预测结果叠加得到最终的风电功率预测结果。通过比较几种预测模型的结果,本文提出的预测模型能有效地提高预测精度,有较高的实用价值。  相似文献   

5.
针对风电功率序列的不确定性和随机性特征,提出基于聚类经验模态分解(EEMD)和支持向量回归机(SVR)的风电功率预测模型。同时,为克服支持向量回归机依赖人为经验选择学习参数的弊端,采用纵横交叉算法(CSO)优化支持向量回归机学习参数。首先,利用聚类经验模态分解将原始风电功率序列分解为一系列复杂度差异明显的子序列。然后,分别对每子序列单独建立CSO-SVR预测模型。最后,叠加各子序列的预测值得到实际预测结果。实例研究表明,所提模型能获得优良的风电功率预测结果。  相似文献   

6.
针对风速序列随时间、空间呈现非平稳性变化的特征,提出一种基于经验模态分解(empirical mode decomposition,EMD)和支持向量机(support vector machine,SVM)的EMD-SVM短期风电功率组合预测方法。该方法首先利用EMD将风速序列分解为一系列相对平稳的分量,以减少不同特征信息间的相互影响;然后利用SVM法对各分量建立预测模型,针对各序列自身特点选择不同的核函数和相关参数来处理各组不同数据,以提高单个模型预测精度。最后将风速预测结果叠加并输入功率转化曲线以得到风电功率预测结果。研究结果表明,EMD-SVM组合预测模型能更好地跟踪风电功率的变化,其预测误差比单一统计模型降低了5%~10%,有效地提高了短期风电功率预测的精度。  相似文献   

7.
为提高风电功率预测精度,提出了一种基于贝叶斯优化的变分模态分解(variational mode decomposition, VMD)和门控循环单元(gated recurrent unit, GRU)相结合的风电功率预测方法。首先使用VMD算法对风电功率序列进行分解,并根据排列熵(permutation entropy, PE)的大小来确定序列分解的最佳模态数。然后将分解后得到的子序列分量与关键气象变量数据结合构成模型输入特征。使用GRU网络对各个子序列分量分别进行预测,并将各个子序列分量的预测结果进行重构得到风电功率预测结果。最后采用贝叶斯优化方法对各个子序列预测模型的网络初始超参数进行优化。采用某风电场的风电数据对所提模型进行验证,并与其他6种模型进行性能对比。结果表明,基于贝叶斯优化的VMD-GRU预测模型明显优于其他模型,具有较好的泛化能力,能够有效提高风电功率预测精度。  相似文献   

8.
针对风电场日前风电出力预测问题,应用一种基于经验模态分解法优化支持向量机的算法的短期风电功率组合预测方法。首先采用经验模态分解法将历史风电功率数据分解为一系列相对平稳的分量序列,以减少不同特征信息间的相互影响,然后采用优化的支持向量机法对所分解的各分量序列分别建立预测模型,针对各分量自身特点选用不同的核函数和参数以取得单个分量的最佳预测精度,最后把各个分量的预测结果叠加,形成风电功率的最终预测值。算例表明,与其他单一预测方法相比,本文使用的组合算法预测精度更高。  相似文献   

9.
曾亮  雷舒敏  王珊珊  常雨芳 《电网技术》2021,45(12):4701-4710
为了提高风电功率的预测精度,提出了一种基于最优变分模态分解(optimal variational model decomposition,OVMD)、麻雀算法(sparrow search algorithm,SSA)、深度极限学习机(deep extreme learning machine,DELM)和灰色模型(grey model,GM)的超短期风电功率预测方法.该方法通过OVMD对原始风电功率时间序列进行自适应分解;然后针对各分量建立DELM预测模型并利用SSA算法进行参数寻优,并对各个分量的预测结果进行求和重构;利用GM对误差序列进行预测;最后将误差的预测值与原始风电功率的预测值叠加得到最终预测结果.对北方某风电场的风电功率数据进行仿真实验,结果表明,该方法预测效果明显优于传统方法,有效提高了超短期风电功率预测的精确性.  相似文献   

10.
高准确度的短期风电功率预测对大规模风电的安全并网运行有着重要意义。为了改进功率快速波动时预测系统的准确度,针对风电场输出功率序列随时间、空间呈现非平稳性变化的特征,提出基于经验模态分解(Empirical Mode Decomposition,EMD)和支持向量机(Support Vector Machine,SVM)的组合预测模型。该方法先利用EMD将建模样本中的功率序列按不同波动尺度分解为相对平稳的独立正交分量,以减少不同特征分量的相互影响;然后对分解出来的每个正交分量分别建立预测模型,通过网格寻优法优化SVM参数,提高对不同尺度功率波动的预测准确度;最后采用改进的IOWA加权方式将各分量预测模型的预测值加权得到总的预测功率。短期预测算例结果表明,EMDSVM模型下采用改进的IOWA加权方式与单一多项式和支持向量机相比,具有更高的功率预测准确度。  相似文献   

11.
风电场风速预测对电力系统的合理调度、安全运行等方面有重大的影响。针对风速时间序列的非线性特征造成其预测精度不佳的问题,采用基于互补型集成经验模态分解和灰狼优化算法优化支持向量回归机的超短期风速组合预测模型来解决。首先利用该模型对非平稳的风速时间序列进行CEEMD分解,分解为一系列的相对平稳分量。然后对各个分量利用灰狼算法优化SVR进行预测。最后,将每一个分量的预测结果集成输出作为最终的风速预测结果。结果表明,该预测模型比其他智能算法基准模型预测精度高,且在风速预测中具有优越性。  相似文献   

12.
基于AMD-ICSA-SVM的超短期风电功率组合预测   总被引:1,自引:0,他引:1       下载免费PDF全文
针对风机出力的随机性、波动性和不确定性,提出了一种基于解析模态分解(AMD)和改进布谷鸟优化支持向量机(ICSA-SVM)参数的超短期风电功率组合预测方法。首先,利用解析模态分解将风功率序列分解为不同频率范围的分量,减小不同频率范围间的相互影响。然后针对各序列特点,采用改进布谷鸟方法分别寻找各自支持向量机的惩罚因子参数和核函数参数,以提高单个模型的预测精度。最后对预测结果进行叠加和误差分析。仿真算例表明,所提出的方法可以很好地跟踪风电功率的变化,有效地提高风电功率预测精度。  相似文献   

13.
风电功率概率预测是分析未来风电功率不确定性的有效方法之一。为提高风电功率概率预测精度,文中提出基于变分模态分解(VMD)与改进门控循环单元分位数回归(QRGRU)的超短期风电功率概率预测方法。首先,采用VMD将原始风电功率序列分解成不同特征的模态函数;然后,对每个模态函数分别建立基于QRGRU的概率预测模型,并将变量间的网络结构约束作为目标函数的惩罚项,改进QRGRU权重在迭代修正过程中的平稳性;最后,在不同分位数条件下叠加各个模态函数预测值,并采用非参数核密度估计方法得到未来风电功率的概率密度函数。结合某风电场实测数据开展具体算例分析,结果表明所提方法能够兼顾区间覆盖率,减少区间宽度,在不同预测步长中均能表现较好的预测效果。  相似文献   

14.
为应对多风电场超短期预测模型中输入和输出变量众多、变量间的时空关系复杂等问题,提出一种基于独立稀疏堆叠自编码器的多风电场超短期功率预测方法.该方法基于降维编码、特征预测和重构解码相结合的预测框架,首先设计了一种独立稀疏双层堆叠自编码器提取多维风电功率的空间独立特征,并将其作为预测对象分别预测,最后将特征预测的结果重构解...  相似文献   

15.
针对动态神经网络风电功率预测模型输入变量较多、模型复杂的问题,将神经网络和平均影响值方法相结合,提出了一种基于神经网络平均影响值的超短期风电功率预测方法。此方法综合考虑了各输入变量对输出变量(风电预测功率)的外部贡献率和内部贡献率,筛选出了对输出变量贡献率最大的输入变量,建立了一个优化的神经网络超短期风电功率预测模型。实验结果表明,所提模型降低了预测模型的复杂度,减少了测量噪声对预测精度的影响,得到了较好的风电功率预测结果。  相似文献   

16.
提出一种包含调整机组优化选取策略的滚动优化调度方法。根据负荷及风电超短期预测信息,首先考虑等效负荷(负荷+风电)预测偏差和机组调节容量匹配、机组爬坡量和等效负荷波动量匹配,以及减少外送断面越限原则进行调节机组优化选取。在此基础上,以机组调整成本及弃风量最小为目标,建立优化模型并采用改进粒子群优化算法求解。实际算例表明,考虑机组优化选取的滚动优化调度实现了超短期时间尺度上对负荷及风电预测偏差的自动跟踪调节,提高了发电计划的准确性,同时有效降低了综合发电成本和外送断面功率越限的风险,提高了电网运行的经济性和安全性。  相似文献   

17.
为提升风电功率预测精度,提出基于二层分解技术和粒子群优化长短期记忆(PSO-LSTM)神经网络组合的超短期风电功率预测模型。对风电功率原始数据,采用快速集合经验模态分解(FEEMD)方法将其分解为一系列本征模态函数(IMF)分量和余项,针对高频分量采用变分模态分解(VMD)进行二层分解。运用样本熵来解决分量个数过多、计算量繁杂的问题。通过偏自相关函数(PACF)筛选出与预测值关联程度高的元素确定输入维数。最后,选用PSO来优化LSTM相关参数建立预测模型并叠加获得最终值。试验结果表明,该组合模型有效提高了预测精度。  相似文献   

18.
数值天气预报(NWP)对风电功率超短期预测模型精度有着重要影响。为充分利用NWP信息,考虑多个风电场的空间相关性,提出一种基于多位置NWP和门控循环单元的风电功率超短期预测模型。首先,通过随机森林分析多位置NWP信息对风电场发电功率的重要程度,利用累积贡献率提取NWP中的有效信息,将加权的NWP信息与历史功率数据作为预测模型的输入变量。然后,选取改进的灰狼寻优算法对门控循环单元的参数进行优化,建立多变量时间序列预测模型,进行风电场发电功率的超短期预测。最后,选取中国某风电场的实测数据进行算例分析,验证了所提方法的有效性和可行性。  相似文献   

19.
为了提高超短期风电功率预测精度,提出了一种自适应提升及预测误差修正的风电功率超短期预测方法。首先,使用CEEMDAN将原始风电功率序列分解为多个分量,用RCMSE对其重构成新模态以降低风电功率序列复杂性及提高预测效率;其次,用EESHHO优化ELM权值和阈值提高模型的泛化性,同时引入AdaBoost提高预测模型的精确度和稳定性;最后,在学习历史训练误差的基础上提出修正预测值的策略,进一步提高预测精度。算例结果验证了所提方法的有效性。  相似文献   

20.
针对风电场实际风速和风电功率序列的波动性、间歇性等特点以及RBF神经网络结构一旦确定隐节点个数就不可变等缺陷,提出了基于小波分析和最小资源分配网络的超短期风电功率预测方法。首先将历史风速和风电功率序列进行小波去噪及多频分解,得到多组高频信号和一组低频信号。然后对各频信号分别建立神经网络预测模型对未来4 h风电功率进行超短期预测。最后将各预测结果通过小波重构得到最终的超短期预测功率。实验结果证明,该方法能有效提高预测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号